Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pred0 | Structured version Visualization version GIF version |
Description: The predecessor class over ∅ is always ∅. (Contributed by Scott Fenton, 16-Apr-2011.) (Proof shortened by AV, 11-Jun-2021.) |
Ref | Expression |
---|---|
pred0 | ⊢ Pred(𝑅, ∅, 𝑋) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6160 | . 2 ⊢ Pred(𝑅, ∅, 𝑋) = (∅ ∩ (◡𝑅 “ {𝑋})) | |
2 | 0in 4308 | . 2 ⊢ (∅ ∩ (◡𝑅 “ {𝑋})) = ∅ | |
3 | 1, 2 | eqtri 2765 | 1 ⊢ Pred(𝑅, ∅, 𝑋) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∩ cin 3865 ∅c0 4237 {csn 4541 ◡ccnv 5550 “ cima 5554 Predcpred 6159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-in 3873 df-nul 4238 df-pred 6160 |
This theorem is referenced by: trpred0 9337 |
Copyright terms: Public domain | W3C validator |