MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pred0 Structured version   Visualization version   GIF version

Theorem pred0 6367
Description: The predecessor class over is always . (Contributed by Scott Fenton, 16-Apr-2011.) (Proof shortened by AV, 11-Jun-2021.)
Assertion
Ref Expression
pred0 Pred(𝑅, ∅, 𝑋) = ∅

Proof of Theorem pred0
StepHypRef Expression
1 df-pred 6332 . 2 Pred(𝑅, ∅, 𝑋) = (∅ ∩ (𝑅 “ {𝑋}))
2 0in 4420 . 2 (∅ ∩ (𝑅 “ {𝑋})) = ∅
31, 2eqtri 2768 1 Pred(𝑅, ∅, 𝑋) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3975  c0 4352  {csn 4648  ccnv 5699  cima 5703  Predcpred 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-nul 4353  df-pred 6332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator