| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pred0 | Structured version Visualization version GIF version | ||
| Description: The predecessor class over ∅ is always ∅. (Contributed by Scott Fenton, 16-Apr-2011.) (Proof shortened by AV, 11-Jun-2021.) |
| Ref | Expression |
|---|---|
| pred0 | ⊢ Pred(𝑅, ∅, 𝑋) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6295 | . 2 ⊢ Pred(𝑅, ∅, 𝑋) = (∅ ∩ (◡𝑅 “ {𝑋})) | |
| 2 | 0in 4377 | . 2 ⊢ (∅ ∩ (◡𝑅 “ {𝑋})) = ∅ | |
| 3 | 1, 2 | eqtri 2759 | 1 ⊢ Pred(𝑅, ∅, 𝑋) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3930 ∅c0 4313 {csn 4606 ◡ccnv 5658 “ cima 5662 Predcpred 6294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-nul 4314 df-pred 6295 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |