MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pred0 Structured version   Visualization version   GIF version

Theorem pred0 6227
Description: The predecessor class over is always . (Contributed by Scott Fenton, 16-Apr-2011.) (Proof shortened by AV, 11-Jun-2021.)
Assertion
Ref Expression
pred0 Pred(𝑅, ∅, 𝑋) = ∅

Proof of Theorem pred0
StepHypRef Expression
1 df-pred 6191 . 2 Pred(𝑅, ∅, 𝑋) = (∅ ∩ (𝑅 “ {𝑋}))
2 0in 4324 . 2 (∅ ∩ (𝑅 “ {𝑋})) = ∅
31, 2eqtri 2766 1 Pred(𝑅, ∅, 𝑋) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3882  c0 4253  {csn 4558  ccnv 5579  cima 5583  Predcpred 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-nul 4254  df-pred 6191
This theorem is referenced by:  trpred0  9410
  Copyright terms: Public domain W3C validator