![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pred0 | Structured version Visualization version GIF version |
Description: The predecessor class over ∅ is always ∅. (Contributed by Scott Fenton, 16-Apr-2011.) (Proof shortened by AV, 11-Jun-2021.) |
Ref | Expression |
---|---|
pred0 | ⊢ Pred(𝑅, ∅, 𝑋) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6023 | . 2 ⊢ Pred(𝑅, ∅, 𝑋) = (∅ ∩ (◡𝑅 “ {𝑋})) | |
2 | 0in 4267 | . 2 ⊢ (∅ ∩ (◡𝑅 “ {𝑋})) = ∅ | |
3 | 1, 2 | eqtri 2819 | 1 ⊢ Pred(𝑅, ∅, 𝑋) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∩ cin 3858 ∅c0 4211 {csn 4472 ◡ccnv 5442 “ cima 5446 Predcpred 6022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-dif 3862 df-in 3866 df-nul 4212 df-pred 6023 |
This theorem is referenced by: trpred0 32685 |
Copyright terms: Public domain | W3C validator |