Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version |
Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0in | ⊢ (∅ ∩ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4135 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
2 | in0 4325 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
3 | 1, 2 | eqtri 2766 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-nul 4257 |
This theorem is referenced by: pred0 6238 fresaunres2 6646 fnsuppeq0 8008 setsfun 16872 setsfun0 16873 indistopon 22151 fctop 22154 cctop 22156 restsn 22321 filconn 23034 chtdif 26307 ppidif 26312 ppi1 26313 cht1 26314 0res 30943 ofpreima2 31003 ordtconnlem1 31874 measvuni 32182 measinb 32189 cndprobnul 32404 ballotlemfp1 32458 ballotlemgun 32491 chtvalz 32609 mrsubvrs 33484 mblfinlem2 35815 ntrkbimka 41648 neicvgbex 41722 limsup0 43235 subsalsal 43898 nnfoctbdjlem 43993 |
Copyright terms: Public domain | W3C validator |