| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0in | ⊢ (∅ ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4159 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
| 2 | in0 4345 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 3 | 1, 2 | eqtri 2754 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3901 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-in 3909 df-nul 4284 |
| This theorem is referenced by: pred0 6282 fresaunres2 6695 fnsuppeq0 8122 setsfun 17082 setsfun0 17083 indistopon 22917 fctop 22920 cctop 22922 restsn 23086 filconn 23799 chtdif 27096 ppidif 27101 ppi1 27102 cht1 27103 0res 32581 ofpreima2 32646 ordtconnlem1 33935 measvuni 34225 measinb 34232 cndprobnul 34448 ballotlemfp1 34503 ballotlemgun 34536 chtvalz 34640 mrsubvrs 35564 mblfinlem2 37704 ntrkbimka 44077 neicvgbex 44151 limsup0 45738 subsalsal 46403 nnfoctbdjlem 46499 setc1onsubc 49640 |
| Copyright terms: Public domain | W3C validator |