| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0in | ⊢ (∅ ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4184 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
| 2 | in0 4370 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 3 | 1, 2 | eqtri 2758 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3925 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-nul 4309 |
| This theorem is referenced by: pred0 6324 fresaunres2 6750 fnsuppeq0 8191 setsfun 17190 setsfun0 17191 indistopon 22939 fctop 22942 cctop 22944 restsn 23108 filconn 23821 chtdif 27120 ppidif 27125 ppi1 27126 cht1 27127 0res 32584 ofpreima2 32644 ordtconnlem1 33955 measvuni 34245 measinb 34252 cndprobnul 34469 ballotlemfp1 34524 ballotlemgun 34557 chtvalz 34661 mrsubvrs 35544 mblfinlem2 37682 ntrkbimka 44062 neicvgbex 44136 limsup0 45723 subsalsal 46388 nnfoctbdjlem 46484 setc1onsubc 49479 |
| Copyright terms: Public domain | W3C validator |