| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0in | ⊢ (∅ ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4172 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
| 2 | in0 4358 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 3 | 1, 2 | eqtri 2752 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3913 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-nul 4297 |
| This theorem is referenced by: pred0 6308 fresaunres2 6732 fnsuppeq0 8171 setsfun 17141 setsfun0 17142 indistopon 22888 fctop 22891 cctop 22893 restsn 23057 filconn 23770 chtdif 27068 ppidif 27073 ppi1 27074 cht1 27075 0res 32532 ofpreima2 32590 ordtconnlem1 33914 measvuni 34204 measinb 34211 cndprobnul 34428 ballotlemfp1 34483 ballotlemgun 34516 chtvalz 34620 mrsubvrs 35509 mblfinlem2 37652 ntrkbimka 44027 neicvgbex 44101 limsup0 45692 subsalsal 46357 nnfoctbdjlem 46453 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |