![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version |
Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0in | ⊢ (∅ ∩ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4217 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
2 | in0 4401 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
3 | 1, 2 | eqtri 2763 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3962 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-nul 4340 |
This theorem is referenced by: pred0 6358 fresaunres2 6781 fnsuppeq0 8216 setsfun 17205 setsfun0 17206 indistopon 23024 fctop 23027 cctop 23029 restsn 23194 filconn 23907 chtdif 27216 ppidif 27221 ppi1 27222 cht1 27223 0res 32623 ofpreima2 32683 ordtconnlem1 33885 measvuni 34195 measinb 34202 cndprobnul 34419 ballotlemfp1 34473 ballotlemgun 34506 chtvalz 34623 mrsubvrs 35507 mblfinlem2 37645 ntrkbimka 44028 neicvgbex 44102 limsup0 45650 subsalsal 46315 nnfoctbdjlem 46411 |
Copyright terms: Public domain | W3C validator |