| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0in | ⊢ (∅ ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4209 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
| 2 | in0 4395 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 3 | 1, 2 | eqtri 2765 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3950 ∅c0 4333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-nul 4334 |
| This theorem is referenced by: pred0 6356 fresaunres2 6780 fnsuppeq0 8217 setsfun 17208 setsfun0 17209 indistopon 23008 fctop 23011 cctop 23013 restsn 23178 filconn 23891 chtdif 27201 ppidif 27206 ppi1 27207 cht1 27208 0res 32616 ofpreima2 32676 ordtconnlem1 33923 measvuni 34215 measinb 34222 cndprobnul 34439 ballotlemfp1 34494 ballotlemgun 34527 chtvalz 34644 mrsubvrs 35527 mblfinlem2 37665 ntrkbimka 44051 neicvgbex 44125 limsup0 45709 subsalsal 46374 nnfoctbdjlem 46470 |
| Copyright terms: Public domain | W3C validator |