| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0in | ⊢ (∅ ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4175 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
| 2 | in0 4361 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 3 | 1, 2 | eqtri 2753 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3916 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-nul 4300 |
| This theorem is referenced by: pred0 6311 fresaunres2 6735 fnsuppeq0 8174 setsfun 17148 setsfun0 17149 indistopon 22895 fctop 22898 cctop 22900 restsn 23064 filconn 23777 chtdif 27075 ppidif 27080 ppi1 27081 cht1 27082 0res 32539 ofpreima2 32597 ordtconnlem1 33921 measvuni 34211 measinb 34218 cndprobnul 34435 ballotlemfp1 34490 ballotlemgun 34523 chtvalz 34627 mrsubvrs 35516 mblfinlem2 37659 ntrkbimka 44034 neicvgbex 44108 limsup0 45699 subsalsal 46364 nnfoctbdjlem 46460 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |