| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0in | ⊢ (∅ ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4158 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
| 2 | in0 4344 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 3 | 1, 2 | eqtri 2756 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3897 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-nul 4283 |
| This theorem is referenced by: pred0 6289 fresaunres2 6702 fnsuppeq0 8130 setsfun 17086 setsfun0 17087 indistopon 22919 fctop 22922 cctop 22924 restsn 23088 filconn 23801 chtdif 27098 ppidif 27103 ppi1 27104 cht1 27105 0res 32587 ofpreima2 32652 ordtconnlem1 33960 measvuni 34250 measinb 34257 cndprobnul 34473 ballotlemfp1 34528 ballotlemgun 34561 chtvalz 34665 mrsubvrs 35589 mblfinlem2 37721 ntrkbimka 44158 neicvgbex 44232 limsup0 45819 subsalsal 46484 nnfoctbdjlem 46580 setc1onsubc 49730 |
| Copyright terms: Public domain | W3C validator |