| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version | ||
| Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0in | ⊢ (∅ ∩ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4162 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
| 2 | in0 4348 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 3 | 1, 2 | eqtri 2752 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3904 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-in 3912 df-nul 4287 |
| This theorem is referenced by: pred0 6287 fresaunres2 6700 fnsuppeq0 8132 setsfun 17100 setsfun0 17101 indistopon 22904 fctop 22907 cctop 22909 restsn 23073 filconn 23786 chtdif 27084 ppidif 27089 ppi1 27090 cht1 27091 0res 32565 ofpreima2 32623 ordtconnlem1 33893 measvuni 34183 measinb 34190 cndprobnul 34407 ballotlemfp1 34462 ballotlemgun 34495 chtvalz 34599 mrsubvrs 35497 mblfinlem2 37640 ntrkbimka 44014 neicvgbex 44088 limsup0 45679 subsalsal 46344 nnfoctbdjlem 46440 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |