![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version |
Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0in | ⊢ (∅ ∩ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4230 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
2 | in0 4418 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
3 | 1, 2 | eqtri 2768 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-nul 4353 |
This theorem is referenced by: pred0 6367 fresaunres2 6793 fnsuppeq0 8233 setsfun 17218 setsfun0 17219 indistopon 23029 fctop 23032 cctop 23034 restsn 23199 filconn 23912 chtdif 27219 ppidif 27224 ppi1 27225 cht1 27226 0res 32625 ofpreima2 32684 ordtconnlem1 33870 measvuni 34178 measinb 34185 cndprobnul 34402 ballotlemfp1 34456 ballotlemgun 34489 chtvalz 34606 mrsubvrs 35490 mblfinlem2 37618 ntrkbimka 44000 neicvgbex 44074 limsup0 45615 subsalsal 46280 nnfoctbdjlem 46376 |
Copyright terms: Public domain | W3C validator |