Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version |
Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0in | ⊢ (∅ ∩ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4140 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
2 | in0 4331 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
3 | 1, 2 | eqtri 2768 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∩ cin 3891 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-in 3899 df-nul 4263 |
This theorem is referenced by: pred0 6237 fresaunres2 6644 fnsuppeq0 7999 setsfun 16870 setsfun0 16871 indistopon 22149 fctop 22152 cctop 22154 restsn 22319 filconn 23032 chtdif 26305 ppidif 26310 ppi1 26311 cht1 26312 0res 30939 ofpreima2 30999 ordtconnlem1 31870 measvuni 32178 measinb 32185 cndprobnul 32400 ballotlemfp1 32454 ballotlemgun 32487 chtvalz 32605 mrsubvrs 33480 mblfinlem2 35811 ntrkbimka 41618 neicvgbex 41692 limsup0 43206 subsalsal 43869 nnfoctbdjlem 43964 |
Copyright terms: Public domain | W3C validator |