Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0in | Structured version Visualization version GIF version |
Description: The intersection of the empty set with a class is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0in | ⊢ (∅ ∩ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . 2 ⊢ (∅ ∩ 𝐴) = (𝐴 ∩ ∅) | |
2 | in0 4322 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
3 | 1, 2 | eqtri 2766 | 1 ⊢ (∅ ∩ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-nul 4254 |
This theorem is referenced by: pred0 6227 fresaunres2 6630 fnsuppeq0 7979 setsfun 16800 setsfun0 16801 indistopon 22059 fctop 22062 cctop 22064 restsn 22229 filconn 22942 chtdif 26212 ppidif 26217 ppi1 26218 cht1 26219 0res 30844 ofpreima2 30905 ordtconnlem1 31776 measvuni 32082 measinb 32089 cndprobnul 32304 ballotlemfp1 32358 ballotlemgun 32391 chtvalz 32509 mrsubvrs 33384 mblfinlem2 35742 ntrkbimka 41537 neicvgbex 41611 limsup0 43125 subsalsal 43788 nnfoctbdjlem 43883 |
Copyright terms: Public domain | W3C validator |