![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version |
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6316). (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | cX | . . 3 class 𝑋 | |
4 | 1, 2, 3 | cpred 6298 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
5 | 2 | ccnv 5671 | . . . 4 class ◡𝑅 |
6 | 3 | csn 4624 | . . . 4 class {𝑋} |
7 | 5, 6 | cima 5675 | . . 3 class (◡𝑅 “ {𝑋}) |
8 | 1, 7 | cin 3943 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 4, 8 | wceq 1534 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Colors of variables: wff setvar class |
This definition is referenced by: predeq123 6300 nfpred 6304 csbpredg 6305 predpredss 6306 predss 6307 sspred 6308 dfpred2 6309 elpredgg 6312 predexg 6317 dffr4 6319 predel 6320 predidm 6326 predin 6327 predun 6328 preddif 6329 predep 6330 pred0 6335 dfse3 6336 predrelss 6337 predprc 6338 predres 6339 frpoind 6342 wfiOLD 6351 frind 9765 |
Copyright terms: Public domain | W3C validator |