MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pred Structured version   Visualization version   GIF version

Definition df-pred 6030
Description: Define the predecessor class of a relationship. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6043) . (Contributed by Scott Fenton, 29-Jan-2011.)
Assertion
Ref Expression
df-pred Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))

Detailed syntax breakdown of Definition df-pred
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
3 cX . . 3 class 𝑋
41, 2, 3cpred 6029 . 2 class Pred(𝑅, 𝐴, 𝑋)
52ccnv 5449 . . . 4 class 𝑅
63csn 4478 . . . 4 class {𝑋}
75, 6cima 5453 . . 3 class (𝑅 “ {𝑋})
81, 7cin 3864 . 2 class (𝐴 ∩ (𝑅 “ {𝑋}))
94, 8wceq 1525 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
Colors of variables: wff setvar class
This definition is referenced by:  predeq123  6031  nfpred  6035  predpredss  6036  predss  6037  sspred  6038  dfpred2  6039  elpredim  6042  elpred  6043  elpredg  6044  predasetex  6045  dffr4  6046  predel  6047  predidm  6052  predin  6053  predun  6054  preddif  6055  predep  6056  pred0  6060  wfi  6063  frpoind  32691  frind  32696  csbpredg  34159
  Copyright terms: Public domain W3C validator