| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version | ||
| Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6261). (Contributed by Scott Fenton, 29-Jan-2011.) |
| Ref | Expression |
|---|---|
| df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | cX | . . 3 class 𝑋 | |
| 4 | 1, 2, 3 | cpred 6243 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
| 5 | 2 | ccnv 5613 | . . . 4 class ◡𝑅 |
| 6 | 3 | csn 4574 | . . . 4 class {𝑋} |
| 7 | 5, 6 | cima 5617 | . . 3 class (◡𝑅 “ {𝑋}) |
| 8 | 1, 7 | cin 3899 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 9 | 4, 8 | wceq 1541 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: predeq123 6245 nfpred 6249 csbpredg 6250 predpredss 6251 predss 6252 sspred 6253 dfpred2 6254 elpredgg 6257 predexg 6262 dffr4 6263 predel 6264 predidm 6269 predin 6270 predun 6271 preddif 6272 predep 6273 pred0 6278 dfse3 6279 predrelss 6280 predprc 6281 predres 6282 frpoind 6285 frind 9635 |
| Copyright terms: Public domain | W3C validator |