MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pred Structured version   Visualization version   GIF version

Definition df-pred 6206
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6223). (Contributed by Scott Fenton, 29-Jan-2011.)
Assertion
Ref Expression
df-pred Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))

Detailed syntax breakdown of Definition df-pred
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
3 cX . . 3 class 𝑋
41, 2, 3cpred 6205 . 2 class Pred(𝑅, 𝐴, 𝑋)
52ccnv 5589 . . . 4 class 𝑅
63csn 4562 . . . 4 class {𝑋}
75, 6cima 5593 . . 3 class (𝑅 “ {𝑋})
81, 7cin 3887 . 2 class (𝐴 ∩ (𝑅 “ {𝑋}))
94, 8wceq 1539 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
Colors of variables: wff setvar class
This definition is referenced by:  predeq123  6207  nfpred  6211  csbpredg  6212  predpredss  6213  predss  6214  sspred  6215  dfpred2  6216  elpredgg  6219  predexg  6224  dffr4  6226  predel  6227  predidm  6233  predin  6234  predun  6235  preddif  6236  predep  6237  pred0  6242  dfse3  6243  predrelss  6244  predprc  6245  predres  6246  frpoind  6249  wfiOLD  6258  frind  9517
  Copyright terms: Public domain W3C validator