![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version |
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6318). (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | cX | . . 3 class 𝑋 | |
4 | 1, 2, 3 | cpred 6300 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
5 | 2 | ccnv 5676 | . . . 4 class ◡𝑅 |
6 | 3 | csn 4629 | . . . 4 class {𝑋} |
7 | 5, 6 | cima 5680 | . . 3 class (◡𝑅 “ {𝑋}) |
8 | 1, 7 | cin 3948 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 4, 8 | wceq 1542 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Colors of variables: wff setvar class |
This definition is referenced by: predeq123 6302 nfpred 6306 csbpredg 6307 predpredss 6308 predss 6309 sspred 6310 dfpred2 6311 elpredgg 6314 predexg 6319 dffr4 6321 predel 6322 predidm 6328 predin 6329 predun 6330 preddif 6331 predep 6332 pred0 6337 dfse3 6338 predrelss 6339 predprc 6340 predres 6341 frpoind 6344 wfiOLD 6353 frind 9745 |
Copyright terms: Public domain | W3C validator |