| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version | ||
| Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6273). (Contributed by Scott Fenton, 29-Jan-2011.) |
| Ref | Expression |
|---|---|
| df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | cX | . . 3 class 𝑋 | |
| 4 | 1, 2, 3 | cpred 6255 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
| 5 | 2 | ccnv 5620 | . . . 4 class ◡𝑅 |
| 6 | 3 | csn 4577 | . . . 4 class {𝑋} |
| 7 | 5, 6 | cima 5624 | . . 3 class (◡𝑅 “ {𝑋}) |
| 8 | 1, 7 | cin 3898 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 9 | 4, 8 | wceq 1541 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: predeq123 6257 nfpred 6261 csbpredg 6262 predpredss 6263 predss 6264 sspred 6265 dfpred2 6266 elpredgg 6269 predexg 6274 dffr4 6275 predel 6276 predidm 6281 predin 6282 predun 6283 preddif 6284 predep 6285 pred0 6290 dfse3 6291 predrelss 6292 predprc 6293 predres 6294 frpoind 6297 frind 9653 |
| Copyright terms: Public domain | W3C validator |