| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version | ||
| Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6307). (Contributed by Scott Fenton, 29-Jan-2011.) |
| Ref | Expression |
|---|---|
| df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | cX | . . 3 class 𝑋 | |
| 4 | 1, 2, 3 | cpred 6289 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
| 5 | 2 | ccnv 5653 | . . . 4 class ◡𝑅 |
| 6 | 3 | csn 4601 | . . . 4 class {𝑋} |
| 7 | 5, 6 | cima 5657 | . . 3 class (◡𝑅 “ {𝑋}) |
| 8 | 1, 7 | cin 3925 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 9 | 4, 8 | wceq 1540 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: predeq123 6291 nfpred 6295 csbpredg 6296 predpredss 6297 predss 6298 sspred 6299 dfpred2 6300 elpredgg 6303 predexg 6308 dffr4 6309 predel 6310 predidm 6315 predin 6316 predun 6317 preddif 6318 predep 6319 pred0 6324 dfse3 6325 predrelss 6326 predprc 6327 predres 6328 frpoind 6331 wfiOLD 6340 frind 9762 |
| Copyright terms: Public domain | W3C validator |