| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version | ||
| Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6294). (Contributed by Scott Fenton, 29-Jan-2011.) |
| Ref | Expression |
|---|---|
| df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | cX | . . 3 class 𝑋 | |
| 4 | 1, 2, 3 | cpred 6276 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
| 5 | 2 | ccnv 5640 | . . . 4 class ◡𝑅 |
| 6 | 3 | csn 4592 | . . . 4 class {𝑋} |
| 7 | 5, 6 | cima 5644 | . . 3 class (◡𝑅 “ {𝑋}) |
| 8 | 1, 7 | cin 3916 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 9 | 4, 8 | wceq 1540 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: predeq123 6278 nfpred 6282 csbpredg 6283 predpredss 6284 predss 6285 sspred 6286 dfpred2 6287 elpredgg 6290 predexg 6295 dffr4 6296 predel 6297 predidm 6302 predin 6303 predun 6304 preddif 6305 predep 6306 pred0 6311 dfse3 6312 predrelss 6313 predprc 6314 predres 6315 frpoind 6318 frind 9710 |
| Copyright terms: Public domain | W3C validator |