![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version |
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6349). (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | cX | . . 3 class 𝑋 | |
4 | 1, 2, 3 | cpred 6331 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
5 | 2 | ccnv 5699 | . . . 4 class ◡𝑅 |
6 | 3 | csn 4648 | . . . 4 class {𝑋} |
7 | 5, 6 | cima 5703 | . . 3 class (◡𝑅 “ {𝑋}) |
8 | 1, 7 | cin 3975 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 4, 8 | wceq 1537 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Colors of variables: wff setvar class |
This definition is referenced by: predeq123 6333 nfpred 6337 csbpredg 6338 predpredss 6339 predss 6340 sspred 6341 dfpred2 6342 elpredgg 6345 predexg 6350 dffr4 6352 predel 6353 predidm 6358 predin 6359 predun 6360 preddif 6361 predep 6362 pred0 6367 dfse3 6368 predrelss 6369 predprc 6370 predres 6371 frpoind 6374 wfiOLD 6383 frind 9819 |
Copyright terms: Public domain | W3C validator |