MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pred Structured version   Visualization version   GIF version

Definition df-pred 6191
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6208). (Contributed by Scott Fenton, 29-Jan-2011.)
Assertion
Ref Expression
df-pred Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))

Detailed syntax breakdown of Definition df-pred
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
3 cX . . 3 class 𝑋
41, 2, 3cpred 6190 . 2 class Pred(𝑅, 𝐴, 𝑋)
52ccnv 5579 . . . 4 class 𝑅
63csn 4558 . . . 4 class {𝑋}
75, 6cima 5583 . . 3 class (𝑅 “ {𝑋})
81, 7cin 3882 . 2 class (𝐴 ∩ (𝑅 “ {𝑋}))
94, 8wceq 1539 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
Colors of variables: wff setvar class
This definition is referenced by:  predeq123  6192  nfpred  6196  csbpredg  6197  predpredss  6198  predss  6199  sspred  6200  dfpred2  6201  elpredgg  6204  predexg  6209  dffr4  6211  predel  6212  predidm  6218  predin  6219  predun  6220  preddif  6221  predep  6222  pred0  6227  frpoind  6230  wfiOLD  6239  frind  9439  dfse3  33580
  Copyright terms: Public domain W3C validator