Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version |
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6223). (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | cX | . . 3 class 𝑋 | |
4 | 1, 2, 3 | cpred 6205 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
5 | 2 | ccnv 5589 | . . . 4 class ◡𝑅 |
6 | 3 | csn 4562 | . . . 4 class {𝑋} |
7 | 5, 6 | cima 5593 | . . 3 class (◡𝑅 “ {𝑋}) |
8 | 1, 7 | cin 3887 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 4, 8 | wceq 1539 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Colors of variables: wff setvar class |
This definition is referenced by: predeq123 6207 nfpred 6211 csbpredg 6212 predpredss 6213 predss 6214 sspred 6215 dfpred2 6216 elpredgg 6219 predexg 6224 dffr4 6226 predel 6227 predidm 6233 predin 6234 predun 6235 preddif 6236 predep 6237 pred0 6242 dfse3 6243 predrelss 6244 predprc 6245 predres 6246 frpoind 6249 wfiOLD 6258 frind 9517 |
Copyright terms: Public domain | W3C validator |