![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version |
Description: Define the predecessor class of a relationship. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6043) . (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | cX | . . 3 class 𝑋 | |
4 | 1, 2, 3 | cpred 6029 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
5 | 2 | ccnv 5449 | . . . 4 class ◡𝑅 |
6 | 3 | csn 4478 | . . . 4 class {𝑋} |
7 | 5, 6 | cima 5453 | . . 3 class (◡𝑅 “ {𝑋}) |
8 | 1, 7 | cin 3864 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 4, 8 | wceq 1525 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Colors of variables: wff setvar class |
This definition is referenced by: predeq123 6031 nfpred 6035 predpredss 6036 predss 6037 sspred 6038 dfpred2 6039 elpredim 6042 elpred 6043 elpredg 6044 predasetex 6045 dffr4 6046 predel 6047 predidm 6052 predin 6053 predun 6054 preddif 6055 predep 6056 pred0 6060 wfi 6063 frpoind 32691 frind 32696 csbpredg 34159 |
Copyright terms: Public domain | W3C validator |