MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pred Structured version   Visualization version   GIF version

Definition df-pred 6301
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6318). (Contributed by Scott Fenton, 29-Jan-2011.)
Assertion
Ref Expression
df-pred Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))

Detailed syntax breakdown of Definition df-pred
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
3 cX . . 3 class 𝑋
41, 2, 3cpred 6300 . 2 class Pred(𝑅, 𝐴, 𝑋)
52ccnv 5676 . . . 4 class 𝑅
63csn 4629 . . . 4 class {𝑋}
75, 6cima 5680 . . 3 class (𝑅 “ {𝑋})
81, 7cin 3948 . 2 class (𝐴 ∩ (𝑅 “ {𝑋}))
94, 8wceq 1542 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
Colors of variables: wff setvar class
This definition is referenced by:  predeq123  6302  nfpred  6306  csbpredg  6307  predpredss  6308  predss  6309  sspred  6310  dfpred2  6311  elpredgg  6314  predexg  6319  dffr4  6321  predel  6322  predidm  6328  predin  6329  predun  6330  preddif  6331  predep  6332  pred0  6337  dfse3  6338  predrelss  6339  predprc  6340  predres  6341  frpoind  6344  wfiOLD  6353  frind  9745
  Copyright terms: Public domain W3C validator