| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version | ||
| Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6291). (Contributed by Scott Fenton, 29-Jan-2011.) |
| Ref | Expression |
|---|---|
| df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | cX | . . 3 class 𝑋 | |
| 4 | 1, 2, 3 | cpred 6273 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
| 5 | 2 | ccnv 5637 | . . . 4 class ◡𝑅 |
| 6 | 3 | csn 4589 | . . . 4 class {𝑋} |
| 7 | 5, 6 | cima 5641 | . . 3 class (◡𝑅 “ {𝑋}) |
| 8 | 1, 7 | cin 3913 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 9 | 4, 8 | wceq 1540 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: predeq123 6275 nfpred 6279 csbpredg 6280 predpredss 6281 predss 6282 sspred 6283 dfpred2 6284 elpredgg 6287 predexg 6292 dffr4 6293 predel 6294 predidm 6299 predin 6300 predun 6301 preddif 6302 predep 6303 pred0 6308 dfse3 6309 predrelss 6310 predprc 6311 predres 6312 frpoind 6315 frind 9703 |
| Copyright terms: Public domain | W3C validator |