MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pred Structured version   Visualization version   GIF version

Definition df-pred 6244
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6261). (Contributed by Scott Fenton, 29-Jan-2011.)
Assertion
Ref Expression
df-pred Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))

Detailed syntax breakdown of Definition df-pred
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
3 cX . . 3 class 𝑋
41, 2, 3cpred 6243 . 2 class Pred(𝑅, 𝐴, 𝑋)
52ccnv 5613 . . . 4 class 𝑅
63csn 4574 . . . 4 class {𝑋}
75, 6cima 5617 . . 3 class (𝑅 “ {𝑋})
81, 7cin 3899 . 2 class (𝐴 ∩ (𝑅 “ {𝑋}))
94, 8wceq 1541 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
Colors of variables: wff setvar class
This definition is referenced by:  predeq123  6245  nfpred  6249  csbpredg  6250  predpredss  6251  predss  6252  sspred  6253  dfpred2  6254  elpredgg  6257  predexg  6262  dffr4  6263  predel  6264  predidm  6269  predin  6270  predun  6271  preddif  6272  predep  6273  pred0  6278  dfse3  6279  predrelss  6280  predprc  6281  predres  6282  frpoind  6285  frind  9635
  Copyright terms: Public domain W3C validator