MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pred Structured version   Visualization version   GIF version

Definition df-pred 6253
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6270). (Contributed by Scott Fenton, 29-Jan-2011.)
Assertion
Ref Expression
df-pred Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))

Detailed syntax breakdown of Definition df-pred
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
3 cX . . 3 class 𝑋
41, 2, 3cpred 6252 . 2 class Pred(𝑅, 𝐴, 𝑋)
52ccnv 5622 . . . 4 class 𝑅
63csn 4579 . . . 4 class {𝑋}
75, 6cima 5626 . . 3 class (𝑅 “ {𝑋})
81, 7cin 3904 . 2 class (𝐴 ∩ (𝑅 “ {𝑋}))
94, 8wceq 1540 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
Colors of variables: wff setvar class
This definition is referenced by:  predeq123  6254  nfpred  6258  csbpredg  6259  predpredss  6260  predss  6261  sspred  6262  dfpred2  6263  elpredgg  6266  predexg  6271  dffr4  6272  predel  6273  predidm  6278  predin  6279  predun  6280  preddif  6281  predep  6282  pred0  6287  dfse3  6288  predrelss  6289  predprc  6290  predres  6291  frpoind  6294  frind  9665
  Copyright terms: Public domain W3C validator