MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pred Structured version   Visualization version   GIF version

Definition df-pred 6256
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6273). (Contributed by Scott Fenton, 29-Jan-2011.)
Assertion
Ref Expression
df-pred Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))

Detailed syntax breakdown of Definition df-pred
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
3 cX . . 3 class 𝑋
41, 2, 3cpred 6255 . 2 class Pred(𝑅, 𝐴, 𝑋)
52ccnv 5620 . . . 4 class 𝑅
63csn 4577 . . . 4 class {𝑋}
75, 6cima 5624 . . 3 class (𝑅 “ {𝑋})
81, 7cin 3898 . 2 class (𝐴 ∩ (𝑅 “ {𝑋}))
94, 8wceq 1541 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
Colors of variables: wff setvar class
This definition is referenced by:  predeq123  6257  nfpred  6261  csbpredg  6262  predpredss  6263  predss  6264  sspred  6265  dfpred2  6266  elpredgg  6269  predexg  6274  dffr4  6275  predel  6276  predidm  6281  predin  6282  predun  6283  preddif  6284  predep  6285  pred0  6290  dfse3  6291  predrelss  6292  predprc  6293  predres  6294  frpoind  6297  frind  9653
  Copyright terms: Public domain W3C validator