| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version | ||
| Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6270). (Contributed by Scott Fenton, 29-Jan-2011.) |
| Ref | Expression |
|---|---|
| df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | cX | . . 3 class 𝑋 | |
| 4 | 1, 2, 3 | cpred 6252 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
| 5 | 2 | ccnv 5622 | . . . 4 class ◡𝑅 |
| 6 | 3 | csn 4579 | . . . 4 class {𝑋} |
| 7 | 5, 6 | cima 5626 | . . 3 class (◡𝑅 “ {𝑋}) |
| 8 | 1, 7 | cin 3904 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 9 | 4, 8 | wceq 1540 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: predeq123 6254 nfpred 6258 csbpredg 6259 predpredss 6260 predss 6261 sspred 6262 dfpred2 6263 elpredgg 6266 predexg 6271 dffr4 6272 predel 6273 predidm 6278 predin 6279 predun 6280 preddif 6281 predep 6282 pred0 6287 dfse3 6288 predrelss 6289 predprc 6290 predres 6291 frpoind 6294 frind 9665 |
| Copyright terms: Public domain | W3C validator |