Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-pred | Structured version Visualization version GIF version |
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6208). (Contributed by Scott Fenton, 29-Jan-2011.) |
Ref | Expression |
---|---|
df-pred | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | cX | . . 3 class 𝑋 | |
4 | 1, 2, 3 | cpred 6190 | . 2 class Pred(𝑅, 𝐴, 𝑋) |
5 | 2 | ccnv 5579 | . . . 4 class ◡𝑅 |
6 | 3 | csn 4558 | . . . 4 class {𝑋} |
7 | 5, 6 | cima 5583 | . . 3 class (◡𝑅 “ {𝑋}) |
8 | 1, 7 | cin 3882 | . 2 class (𝐴 ∩ (◡𝑅 “ {𝑋})) |
9 | 4, 8 | wceq 1539 | 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
Colors of variables: wff setvar class |
This definition is referenced by: predeq123 6192 nfpred 6196 csbpredg 6197 predpredss 6198 predss 6199 sspred 6200 dfpred2 6201 elpredgg 6204 predexg 6209 dffr4 6211 predel 6212 predidm 6218 predin 6219 predun 6220 preddif 6221 predep 6222 pred0 6227 frpoind 6230 wfiOLD 6239 frind 9439 dfse3 33580 |
Copyright terms: Public domain | W3C validator |