MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pred Structured version   Visualization version   GIF version

Definition df-pred 6277
Description: Define the predecessor class of a binary relation. This is the class of all elements 𝑦 of 𝐴 such that 𝑦𝑅𝑋 (see elpred 6294). (Contributed by Scott Fenton, 29-Jan-2011.)
Assertion
Ref Expression
df-pred Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))

Detailed syntax breakdown of Definition df-pred
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
3 cX . . 3 class 𝑋
41, 2, 3cpred 6276 . 2 class Pred(𝑅, 𝐴, 𝑋)
52ccnv 5640 . . . 4 class 𝑅
63csn 4592 . . . 4 class {𝑋}
75, 6cima 5644 . . 3 class (𝑅 “ {𝑋})
81, 7cin 3916 . 2 class (𝐴 ∩ (𝑅 “ {𝑋}))
94, 8wceq 1540 1 wff Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
Colors of variables: wff setvar class
This definition is referenced by:  predeq123  6278  nfpred  6282  csbpredg  6283  predpredss  6284  predss  6285  sspred  6286  dfpred2  6287  elpredgg  6290  predexg  6295  dffr4  6296  predel  6297  predidm  6302  predin  6303  predun  6304  preddif  6305  predep  6306  pred0  6311  dfse3  6312  predrelss  6313  predprc  6314  predres  6315  frpoind  6318  frind  9710
  Copyright terms: Public domain W3C validator