MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfse3 Structured version   Visualization version   GIF version

Theorem dfse3 6344
Description: Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
dfse3 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfse3
StepHypRef Expression
1 dfse2 6105 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
2 df-pred 6307 . . . 4 Pred(𝑅, 𝐴, 𝑥) = (𝐴 ∩ (𝑅 “ {𝑥}))
32eleq1i 2816 . . 3 (Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
43ralbii 3082 . 2 (∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
51, 4bitr4i 277 1 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  wral 3050  Vcvv 3461  cin 3943  {csn 4630   Se wse 5631  ccnv 5677  cima 5681  Predcpred 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-se 5634  df-xp 5684  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307
This theorem is referenced by:  sexp2  8151  sexp3  8158  ttrclselem2  9751  ttrclse  9752
  Copyright terms: Public domain W3C validator