Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfse3 | Structured version Visualization version GIF version |
Description: Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
dfse3 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfse2 6038 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | |
2 | df-pred 6238 | . . . 4 ⊢ Pred(𝑅, 𝐴, 𝑥) = (𝐴 ∩ (◡𝑅 “ {𝑥})) | |
3 | 2 | eleq1i 2827 | . . 3 ⊢ (Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
4 | 3 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 ∩ cin 3897 {csn 4573 Se wse 5573 ◡ccnv 5619 “ cima 5623 Predcpred 6237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-se 5576 df-xp 5626 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 |
This theorem is referenced by: ttrclselem2 9583 ttrclse 9584 sexp2 34075 sexp3 34081 |
Copyright terms: Public domain | W3C validator |