| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfse3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| dfse3 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfse2 6071 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | |
| 2 | df-pred 6274 | . . . 4 ⊢ Pred(𝑅, 𝐴, 𝑥) = (𝐴 ∩ (◡𝑅 “ {𝑥})) | |
| 3 | 2 | eleq1i 2819 | . . 3 ⊢ (Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| 4 | 3 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∩ cin 3913 {csn 4589 Se wse 5589 ◡ccnv 5637 “ cima 5641 Predcpred 6273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-se 5592 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 |
| This theorem is referenced by: sexp2 8125 sexp3 8132 ttrclselem2 9679 ttrclse 9680 |
| Copyright terms: Public domain | W3C validator |