| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfse3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| dfse3 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfse2 6055 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | |
| 2 | df-pred 6255 | . . . 4 ⊢ Pred(𝑅, 𝐴, 𝑥) = (𝐴 ∩ (◡𝑅 “ {𝑥})) | |
| 3 | 2 | eleq1i 2824 | . . 3 ⊢ (Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| 4 | 3 | ralbii 3079 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∩ cin 3897 {csn 4577 Se wse 5572 ◡ccnv 5620 “ cima 5624 Predcpred 6254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-se 5575 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 |
| This theorem is referenced by: sexp2 8084 sexp3 8091 ttrclselem2 9625 ttrclse 9626 |
| Copyright terms: Public domain | W3C validator |