MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfse3 Structured version   Visualization version   GIF version

Theorem dfse3 6330
Description: Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
dfse3 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfse3
StepHypRef Expression
1 dfse2 6092 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
2 df-pred 6295 . . . 4 Pred(𝑅, 𝐴, 𝑥) = (𝐴 ∩ (𝑅 “ {𝑥}))
32eleq1i 2826 . . 3 (Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
43ralbii 3083 . 2 (∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
51, 4bitr4i 278 1 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wral 3052  Vcvv 3464  cin 3930  {csn 4606   Se wse 5609  ccnv 5658  cima 5662  Predcpred 6294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-se 5612  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295
This theorem is referenced by:  sexp2  8150  sexp3  8157  ttrclselem2  9745  ttrclse  9746
  Copyright terms: Public domain W3C validator