MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfse3 Structured version   Visualization version   GIF version

Theorem dfse3 6290
Description: Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
dfse3 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfse3
StepHypRef Expression
1 dfse2 6055 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
2 df-pred 6255 . . . 4 Pred(𝑅, 𝐴, 𝑥) = (𝐴 ∩ (𝑅 “ {𝑥}))
32eleq1i 2824 . . 3 (Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
43ralbii 3079 . 2 (∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
51, 4bitr4i 278 1 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  wral 3048  Vcvv 3437  cin 3897  {csn 4577   Se wse 5572  ccnv 5620  cima 5624  Predcpred 6254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-se 5575  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255
This theorem is referenced by:  sexp2  8084  sexp3  8091  ttrclselem2  9625  ttrclse  9626
  Copyright terms: Public domain W3C validator