Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfse3 | Structured version Visualization version GIF version |
Description: Alternate definition of set-like relationships. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
dfse3 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfse2 5997 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) | |
2 | df-pred 6191 | . . . 4 ⊢ Pred(𝑅, 𝐴, 𝑥) = (𝐴 ∩ (◡𝑅 “ {𝑥})) | |
3 | 2 | eleq1i 2829 | . . 3 ⊢ (Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
4 | 3 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 Pred(𝑅, 𝐴, 𝑥) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∩ cin 3882 {csn 4558 Se wse 5533 ◡ccnv 5579 “ cima 5583 Predcpred 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-se 5536 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 |
This theorem is referenced by: ttrclselem2 33712 ttrclse 33713 sexp2 33720 sexp3 33726 |
Copyright terms: Public domain | W3C validator |