MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predfrirr Structured version   Visualization version   GIF version

Theorem predfrirr 6286
Description: Given a well-founded relation, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 22-Apr-2011.)
Assertion
Ref Expression
predfrirr (𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))

Proof of Theorem predfrirr
StepHypRef Expression
1 frirr 5595 . . . . 5 ((𝑅 Fr 𝐴𝑋𝐴) → ¬ 𝑋𝑅𝑋)
2 elpredg 6267 . . . . . . 7 ((𝑋𝐴𝑋𝐴) → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋))
32anidms 566 . . . . . 6 (𝑋𝐴 → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋))
43notbid 318 . . . . 5 (𝑋𝐴 → (¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ ¬ 𝑋𝑅𝑋))
51, 4imbitrrid 246 . . . 4 (𝑋𝐴 → ((𝑅 Fr 𝐴𝑋𝐴) → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))
65expd 415 . . 3 (𝑋𝐴 → (𝑅 Fr 𝐴 → (𝑋𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))))
76pm2.43b 55 . 2 (𝑅 Fr 𝐴 → (𝑋𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))
8 predel 6273 . . 3 (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑋𝐴)
98con3i 154 . 2 𝑋𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
107, 9pm2.61d1 180 1 (𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2113   class class class wbr 5093   Fr wfr 5569  Predcpred 6252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-fr 5572  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253
This theorem is referenced by:  frrlem12  8233
  Copyright terms: Public domain W3C validator