MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predfrirr Structured version   Visualization version   GIF version

Theorem predfrirr 6323
Description: Given a well-founded relation, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 22-Apr-2011.)
Assertion
Ref Expression
predfrirr (𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))

Proof of Theorem predfrirr
StepHypRef Expression
1 frirr 5630 . . . . 5 ((𝑅 Fr 𝐴𝑋𝐴) → ¬ 𝑋𝑅𝑋)
2 elpredg 6304 . . . . . . 7 ((𝑋𝐴𝑋𝐴) → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋))
32anidms 566 . . . . . 6 (𝑋𝐴 → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋))
43notbid 318 . . . . 5 (𝑋𝐴 → (¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ ¬ 𝑋𝑅𝑋))
51, 4imbitrrid 246 . . . 4 (𝑋𝐴 → ((𝑅 Fr 𝐴𝑋𝐴) → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))
65expd 415 . . 3 (𝑋𝐴 → (𝑅 Fr 𝐴 → (𝑋𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))))
76pm2.43b 55 . 2 (𝑅 Fr 𝐴 → (𝑋𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))
8 predel 6310 . . 3 (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑋𝐴)
98con3i 154 . 2 𝑋𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
107, 9pm2.61d1 180 1 (𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5119   Fr wfr 5603  Predcpred 6289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-fr 5606  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290
This theorem is referenced by:  frrlem12  8296  wfrlem14OLD  8336
  Copyright terms: Public domain W3C validator