| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predfrirr | Structured version Visualization version GIF version | ||
| Description: Given a well-founded relation, a class is not a member of its predecessor class. (Contributed by Scott Fenton, 22-Apr-2011.) |
| Ref | Expression |
|---|---|
| predfrirr | ⊢ (𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frirr 5617 | . . . . 5 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋𝑅𝑋) | |
| 2 | elpredg 6291 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) | |
| 3 | 2 | anidms 566 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ ¬ 𝑋𝑅𝑋)) |
| 5 | 1, 4 | imbitrrid 246 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → ((𝑅 Fr 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
| 6 | 5 | expd 415 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑅 Fr 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))) |
| 7 | 6 | pm2.43b 55 | . 2 ⊢ (𝑅 Fr 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
| 8 | predel 6297 | . . 3 ⊢ (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑋 ∈ 𝐴) | |
| 9 | 8 | con3i 154 | . 2 ⊢ (¬ 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
| 10 | 7, 9 | pm2.61d1 180 | 1 ⊢ (𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 Fr wfr 5591 Predcpred 6276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-fr 5594 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 |
| This theorem is referenced by: frrlem12 8279 |
| Copyright terms: Public domain | W3C validator |