|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > predasetexOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete form of predexg 6338 as of 27-Oct-2024. (Contributed by Scott Fenton, 8-Feb-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| predasetexOLD.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| predasetexOLD | ⊢ Pred(𝑅, 𝐴, 𝑋) ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | predasetexOLD.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | predexg 6338 | . 2 ⊢ (𝐴 ∈ V → Pred(𝑅, 𝐴, 𝑋) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2107 Vcvv 3479 Predcpred 6319 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-in 3957 df-pred 6320 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |