MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predasetexOLD Structured version   Visualization version   GIF version

Theorem predasetexOLD 6207
Description: Obsolete form of predexg 6206 as of 27-Oct-2024. (Contributed by Scott Fenton, 8-Feb-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
predasetexOLD.1 𝐴 ∈ V
Assertion
Ref Expression
predasetexOLD Pred(𝑅, 𝐴, 𝑋) ∈ V

Proof of Theorem predasetexOLD
StepHypRef Expression
1 predasetexOLD.1 . 2 𝐴 ∈ V
2 predexg 6206 . 2 (𝐴 ∈ V → Pred(𝑅, 𝐴, 𝑋) ∈ V)
31, 2ax-mp 5 1 Pred(𝑅, 𝐴, 𝑋) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2112  Vcvv 3423  Predcpred 6188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-sep 5216
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-in 3891  df-pred 6189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator