![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predasetexOLD | Structured version Visualization version GIF version |
Description: Obsolete form of predexg 6350 as of 27-Oct-2024. (Contributed by Scott Fenton, 8-Feb-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
predasetexOLD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
predasetexOLD | ⊢ Pred(𝑅, 𝐴, 𝑋) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predasetexOLD.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | predexg 6350 | . 2 ⊢ (𝐴 ∈ V → Pred(𝑅, 𝐴, 𝑋) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-pred 6332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |