MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predasetexOLD Structured version   Visualization version   GIF version

Theorem predasetexOLD 6257
Description: Obsolete form of predexg 6256 as of 27-Oct-2024. (Contributed by Scott Fenton, 8-Feb-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
predasetexOLD.1 𝐴 ∈ V
Assertion
Ref Expression
predasetexOLD Pred(𝑅, 𝐴, 𝑋) ∈ V

Proof of Theorem predasetexOLD
StepHypRef Expression
1 predasetexOLD.1 . 2 𝐴 ∈ V
2 predexg 6256 . 2 (𝐴 ∈ V → Pred(𝑅, 𝐴, 𝑋) ∈ V)
31, 2ax-mp 5 1 Pred(𝑅, 𝐴, 𝑋) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  Vcvv 3441  Predcpred 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-in 3905  df-pred 6238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator