![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predasetexOLD | Structured version Visualization version GIF version |
Description: Obsolete form of predexg 6317 as of 27-Oct-2024. (Contributed by Scott Fenton, 8-Feb-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
predasetexOLD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
predasetexOLD | ⊢ Pred(𝑅, 𝐴, 𝑋) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predasetexOLD.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | predexg 6317 | . 2 ⊢ (𝐴 ∈ V → Pred(𝑅, 𝐴, 𝑋) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Vcvv 3469 Predcpred 6298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-in 3951 df-pred 6299 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |