Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predasetexOLD | Structured version Visualization version GIF version |
Description: Obsolete form of predexg 6256 as of 27-Oct-2024. (Contributed by Scott Fenton, 8-Feb-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
predasetexOLD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
predasetexOLD | ⊢ Pred(𝑅, 𝐴, 𝑋) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predasetexOLD.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | predexg 6256 | . 2 ⊢ (𝐴 ∈ V → Pred(𝑅, 𝐴, 𝑋) ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Pred(𝑅, 𝐴, 𝑋) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 Predcpred 6237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-in 3905 df-pred 6238 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |