![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffr4 | Structured version Visualization version GIF version |
Description: Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
dffr4 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr3 6089 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | |
2 | df-pred 6291 | . . . . . 6 ⊢ Pred(𝑅, 𝑥, 𝑦) = (𝑥 ∩ (◡𝑅 “ {𝑦})) | |
3 | 2 | eqeq1i 2729 | . . . . 5 ⊢ (Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) |
4 | 3 | rexbii 3086 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) |
5 | 4 | imbi2i 336 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
6 | 5 | albii 1813 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
7 | 1, 6 | bitr4i 278 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ≠ wne 2932 ∃wrex 3062 ∩ cin 3940 ⊆ wss 3941 ∅c0 4315 {csn 4621 Fr wfr 5619 ◡ccnv 5666 “ cima 5670 Predcpred 6290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-fr 5622 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 |
This theorem is referenced by: frmin 9741 |
Copyright terms: Public domain | W3C validator |