MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr4 Structured version   Visualization version   GIF version

Theorem dffr4 6311
Description: Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
dffr4 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dffr4
StepHypRef Expression
1 dffr3 6089 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
2 df-pred 6291 . . . . . 6 Pred(𝑅, 𝑥, 𝑦) = (𝑥 ∩ (𝑅 “ {𝑦}))
32eqeq1i 2729 . . . . 5 (Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)
43rexbii 3086 . . . 4 (∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)
54imbi2i 336 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
65albii 1813 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
71, 6bitr4i 278 1 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wne 2932  wrex 3062  cin 3940  wss 3941  c0 4315  {csn 4621   Fr wfr 5619  ccnv 5666  cima 5670  Predcpred 6290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-fr 5622  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291
This theorem is referenced by:  frmin  9741
  Copyright terms: Public domain W3C validator