Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffr4 | Structured version Visualization version GIF version |
Description: Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
dffr4 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr3 5996 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) | |
2 | df-pred 6191 | . . . . . 6 ⊢ Pred(𝑅, 𝑥, 𝑦) = (𝑥 ∩ (◡𝑅 “ {𝑦})) | |
3 | 2 | eqeq1i 2743 | . . . . 5 ⊢ (Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) |
4 | 3 | rexbii 3177 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) |
5 | 4 | imbi2i 335 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
6 | 5 | albii 1823 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
7 | 1, 6 | bitr4i 277 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ≠ wne 2942 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 Fr wfr 5532 ◡ccnv 5579 “ cima 5583 Predcpred 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-fr 5535 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 |
This theorem is referenced by: frmin 9438 |
Copyright terms: Public domain | W3C validator |