MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr4 Structured version   Visualization version   GIF version

Theorem dffr4 5881
Description: Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
dffr4 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dffr4
StepHypRef Expression
1 dffr3 5680 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
2 df-pred 5865 . . . . . 6 Pred(𝑅, 𝑥, 𝑦) = (𝑥 ∩ (𝑅 “ {𝑦}))
32eqeq1i 2770 . . . . 5 (Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)
43rexbii 3188 . . . 4 (∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)
54imbi2i 327 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
65albii 1914 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
71, 6bitr4i 269 1 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1650   = wceq 1652  wne 2937  wrex 3056  cin 3731  wss 3732  c0 4079  {csn 4334   Fr wfr 5233  ccnv 5276  cima 5280  Predcpred 5864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-br 4810  df-opab 4872  df-fr 5236  df-xp 5283  df-cnv 5285  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865
This theorem is referenced by:  frmin  32118
  Copyright terms: Public domain W3C validator