MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predexg Structured version   Visualization version   GIF version

Theorem predexg 6338
Description: The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.)
Assertion
Ref Expression
predexg (𝐴𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem predexg
StepHypRef Expression
1 df-pred 6320 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 inex1g 5318 . 2 (𝐴𝑉 → (𝐴 ∩ (𝑅 “ {𝑋})) ∈ V)
31, 2eqeltrid 2844 1 (𝐴𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3479  cin 3949  {csn 4625  ccnv 5683  cima 5687  Predcpred 6319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-in 3957  df-pred 6320
This theorem is referenced by:  predasetexOLD  6339
  Copyright terms: Public domain W3C validator