MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predexg Structured version   Visualization version   GIF version

Theorem predexg 6273
Description: The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.)
Assertion
Ref Expression
predexg (𝐴𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem predexg
StepHypRef Expression
1 df-pred 6255 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 inex1g 5261 . 2 (𝐴𝑉 → (𝐴 ∩ (𝑅 “ {𝑋})) ∈ V)
31, 2eqeltrid 2837 1 (𝐴𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Vcvv 3437  cin 3897  {csn 4577  ccnv 5620  cima 5624  Predcpred 6254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-in 3905  df-pred 6255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator