| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predexg | Structured version Visualization version GIF version | ||
| Description: The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
| Ref | Expression |
|---|---|
| predexg | ⊢ (𝐴 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6255 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 2 | inex1g 5261 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ∈ V) | |
| 3 | 1, 2 | eqeltrid 2837 | 1 ⊢ (𝐴 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 {csn 4577 ◡ccnv 5620 “ cima 5624 Predcpred 6254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-pred 6255 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |