Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predexg | Structured version Visualization version GIF version |
Description: The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.) |
Ref | Expression |
---|---|
predexg | ⊢ (𝐴 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6189 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | inex1g 5236 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (◡𝑅 “ {𝑋})) ∈ V) | |
3 | 1, 2 | eqeltrid 2844 | 1 ⊢ (𝐴 ∈ 𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 Vcvv 3423 ∩ cin 3883 {csn 4558 ◡ccnv 5578 “ cima 5582 Predcpred 6188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-sep 5216 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-in 3891 df-pred 6189 |
This theorem is referenced by: predasetexOLD 6207 |
Copyright terms: Public domain | W3C validator |