MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predexg Structured version   Visualization version   GIF version

Theorem predexg 6295
Description: The predecessor class exists when 𝐴 does. (Contributed by Scott Fenton, 8-Feb-2011.) Generalize to closed form. (Revised by BJ, 27-Oct-2024.)
Assertion
Ref Expression
predexg (𝐴𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V)

Proof of Theorem predexg
StepHypRef Expression
1 df-pred 6277 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
2 inex1g 5277 . 2 (𝐴𝑉 → (𝐴 ∩ (𝑅 “ {𝑋})) ∈ V)
31, 2eqeltrid 2833 1 (𝐴𝑉 → Pred(𝑅, 𝐴, 𝑋) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450  cin 3916  {csn 4592  ccnv 5640  cima 5644  Predcpred 6276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924  df-pred 6277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator