| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predin | Structured version Visualization version GIF version | ||
| Description: Intersection law for predecessor classes. (Contributed by Scott Fenton, 29-Mar-2011.) |
| Ref | Expression |
|---|---|
| predin | ⊢ Pred(𝑅, (𝐴 ∩ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ Pred(𝑅, 𝐵, 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inindir 4216 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (◡𝑅 “ {𝑋})) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
| 2 | df-pred 6295 | . 2 ⊢ Pred(𝑅, (𝐴 ∩ 𝐵), 𝑋) = ((𝐴 ∩ 𝐵) ∩ (◡𝑅 “ {𝑋})) | |
| 3 | df-pred 6295 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 4 | df-pred 6295 | . . 3 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
| 5 | 3, 4 | ineq12i 4198 | . 2 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∩ Pred(𝑅, 𝐵, 𝑋)) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (𝐵 ∩ (◡𝑅 “ {𝑋}))) |
| 6 | 1, 2, 5 | 3eqtr4i 2769 | 1 ⊢ Pred(𝑅, (𝐴 ∩ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ Pred(𝑅, 𝐵, 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3930 {csn 4606 ◡ccnv 5658 “ cima 5662 Predcpred 6294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-pred 6295 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |