MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predidm Structured version   Visualization version   GIF version

Theorem predidm 6218
Description: Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011.)
Assertion
Ref Expression
predidm Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋)

Proof of Theorem predidm
StepHypRef Expression
1 df-pred 6191 . 2 Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (𝑅 “ {𝑋}))
2 df-pred 6191 . . . . 5 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
3 inidm 4149 . . . . . 6 ((𝑅 “ {𝑋}) ∩ (𝑅 “ {𝑋})) = (𝑅 “ {𝑋})
43ineq2i 4140 . . . . 5 (𝐴 ∩ ((𝑅 “ {𝑋}) ∩ (𝑅 “ {𝑋}))) = (𝐴 ∩ (𝑅 “ {𝑋}))
52, 4eqtr4i 2769 . . . 4 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ ((𝑅 “ {𝑋}) ∩ (𝑅 “ {𝑋})))
6 inass 4150 . . . 4 ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ((𝑅 “ {𝑋}) ∩ (𝑅 “ {𝑋})))
75, 6eqtr4i 2769 . . 3 Pred(𝑅, 𝐴, 𝑋) = ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ (𝑅 “ {𝑋}))
82ineq1i 4139 . . 3 (Pred(𝑅, 𝐴, 𝑋) ∩ (𝑅 “ {𝑋})) = ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ (𝑅 “ {𝑋}))
97, 8eqtr4i 2769 . 2 Pred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (𝑅 “ {𝑋}))
101, 9eqtr4i 2769 1 Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3882  {csn 4558  ccnv 5579  cima 5583  Predcpred 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-pred 6191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator