![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predidm | Structured version Visualization version GIF version |
Description: Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011.) |
Ref | Expression |
---|---|
predidm | ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6254 | . 2 ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) | |
2 | df-pred 6254 | . . . . 5 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
3 | inidm 4179 | . . . . . 6 ⊢ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋})) = (◡𝑅 “ {𝑋}) | |
4 | 3 | ineq2i 4170 | . . . . 5 ⊢ (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
5 | 2, 4 | eqtr4i 2764 | . . . 4 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) |
6 | inass 4180 | . . . 4 ⊢ ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) | |
7 | 5, 6 | eqtr4i 2764 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) |
8 | 2 | ineq1i 4169 | . . 3 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) |
9 | 7, 8 | eqtr4i 2764 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) |
10 | 1, 9 | eqtr4i 2764 | 1 ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∩ cin 3910 {csn 4587 ◡ccnv 5633 “ cima 5637 Predcpred 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3446 df-in 3918 df-pred 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |