Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predidm | Structured version Visualization version GIF version |
Description: Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011.) |
Ref | Expression |
---|---|
predidm | ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6191 | . 2 ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) | |
2 | df-pred 6191 | . . . . 5 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
3 | inidm 4149 | . . . . . 6 ⊢ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋})) = (◡𝑅 “ {𝑋}) | |
4 | 3 | ineq2i 4140 | . . . . 5 ⊢ (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
5 | 2, 4 | eqtr4i 2769 | . . . 4 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) |
6 | inass 4150 | . . . 4 ⊢ ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) | |
7 | 5, 6 | eqtr4i 2769 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) |
8 | 2 | ineq1i 4139 | . . 3 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) |
9 | 7, 8 | eqtr4i 2769 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) |
10 | 1, 9 | eqtr4i 2769 | 1 ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 {csn 4558 ◡ccnv 5579 “ cima 5583 Predcpred 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-pred 6191 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |