| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > predidm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011.) |
| Ref | Expression |
|---|---|
| predidm | ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pred 6295 | . 2 ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) | |
| 2 | df-pred 6295 | . . . . 5 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
| 3 | inidm 4207 | . . . . . 6 ⊢ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋})) = (◡𝑅 “ {𝑋}) | |
| 4 | 3 | ineq2i 4197 | . . . . 5 ⊢ (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
| 5 | 2, 4 | eqtr4i 2762 | . . . 4 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) |
| 6 | inass 4208 | . . . 4 ⊢ ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) | |
| 7 | 5, 6 | eqtr4i 2762 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) |
| 8 | 2 | ineq1i 4196 | . . 3 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) |
| 9 | 7, 8 | eqtr4i 2762 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) |
| 10 | 1, 9 | eqtr4i 2762 | 1 ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3930 {csn 4606 ◡ccnv 5658 “ cima 5662 Predcpred 6294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-pred 6295 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |