![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predidm | Structured version Visualization version GIF version |
Description: Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011.) |
Ref | Expression |
---|---|
predidm | ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 6300 | . 2 ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) | |
2 | df-pred 6300 | . . . . 5 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
3 | inidm 4218 | . . . . . 6 ⊢ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋})) = (◡𝑅 “ {𝑋}) | |
4 | 3 | ineq2i 4209 | . . . . 5 ⊢ (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
5 | 2, 4 | eqtr4i 2763 | . . . 4 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) |
6 | inass 4219 | . . . 4 ⊢ ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) = (𝐴 ∩ ((◡𝑅 “ {𝑋}) ∩ (◡𝑅 “ {𝑋}))) | |
7 | 5, 6 | eqtr4i 2763 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) |
8 | 2 | ineq1i 4208 | . . 3 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∩ (◡𝑅 “ {𝑋})) |
9 | 7, 8 | eqtr4i 2763 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (◡𝑅 “ {𝑋})) |
10 | 1, 9 | eqtr4i 2763 | 1 ⊢ Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∩ cin 3947 {csn 4628 ◡ccnv 5675 “ cima 5679 Predcpred 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3955 df-pred 6300 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |