MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predidm Structured version   Visualization version   GIF version

Theorem predidm 6326
Description: Idempotent law for the predecessor class. (Contributed by Scott Fenton, 29-Mar-2011.)
Assertion
Ref Expression
predidm Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋)

Proof of Theorem predidm
StepHypRef Expression
1 df-pred 6299 . 2 Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (𝑅 “ {𝑋}))
2 df-pred 6299 . . . . 5 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
3 inidm 4214 . . . . . 6 ((𝑅 “ {𝑋}) ∩ (𝑅 “ {𝑋})) = (𝑅 “ {𝑋})
43ineq2i 4205 . . . . 5 (𝐴 ∩ ((𝑅 “ {𝑋}) ∩ (𝑅 “ {𝑋}))) = (𝐴 ∩ (𝑅 “ {𝑋}))
52, 4eqtr4i 2758 . . . 4 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ ((𝑅 “ {𝑋}) ∩ (𝑅 “ {𝑋})))
6 inass 4215 . . . 4 ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ (𝑅 “ {𝑋})) = (𝐴 ∩ ((𝑅 “ {𝑋}) ∩ (𝑅 “ {𝑋})))
75, 6eqtr4i 2758 . . 3 Pred(𝑅, 𝐴, 𝑋) = ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ (𝑅 “ {𝑋}))
82ineq1i 4204 . . 3 (Pred(𝑅, 𝐴, 𝑋) ∩ (𝑅 “ {𝑋})) = ((𝐴 ∩ (𝑅 “ {𝑋})) ∩ (𝑅 “ {𝑋}))
97, 8eqtr4i 2758 . 2 Pred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∩ (𝑅 “ {𝑋}))
101, 9eqtr4i 2758 1 Pred(𝑅, Pred(𝑅, 𝐴, 𝑋), 𝑋) = Pred(𝑅, 𝐴, 𝑋)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cin 3943  {csn 4624  ccnv 5671  cima 5675  Predcpred 6298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-in 3951  df-pred 6299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator