![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
ineq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | ineq12 4208 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-in 3956 |
This theorem is referenced by: undir 4277 difundi 4280 difindir 4283 inrab 4307 inrab2 4308 elneldisj 4389 dfif4 4544 dfif5 4545 inxp 5833 resindi 5998 resindir 5999 rnin 6147 inimass 6155 cnvrescnv 6195 predin 6329 funtp 6606 orduniss2 7821 offres 7970 fodomr 9128 epinid0 9595 cnvepnep 9603 wemapwe 9692 cotr3 14925 explecnv 15811 psssdm2 18534 ablfacrp 19936 cnfldfunALT 20957 cnfldfunALTOLD 20958 pjfval2 21264 ofco2 21953 iundisj2 25066 clwwlknondisj 29364 lejdiri 30792 cmbr3i 30853 nonbooli 30904 5oai 30914 3oalem5 30919 mayetes3i 30982 mdexchi 31588 disjpreima 31815 disjxpin 31819 iundisj2f 31821 xppreima 31871 iundisj2fi 32008 xpinpreima 32886 xpinpreima2 32887 ordtcnvNEW 32900 pprodcnveq 34855 dfiota3 34895 bj-inrab 35807 ptrest 36487 ftc1anclem6 36566 xrnres3 37274 br2coss 37308 1cosscnvxrn 37345 refsymrels2 37435 dfeqvrels2 37458 dfeldisj5 37591 dnwech 41790 fgraphopab 41952 onfrALTlem5 43303 onfrALTlem4 43304 onfrALTlem5VD 43646 onfrALTlem4VD 43647 disjxp1 43756 disjinfi 43891 |
Copyright terms: Public domain | W3C validator |