| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| ineq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | ineq12 4166 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-in 3910 |
| This theorem is referenced by: undir 4238 difundi 4241 difindir 4244 inrab 4267 inrab2 4268 elneldisj 4343 dfif4 4492 dfif5 4493 inxpOLD 5775 resindi 5946 resindir 5947 rnin 6095 inimass 6104 cnvrescnv 6144 predin 6275 funtp 6539 orduniss2 7766 offres 7918 fodomr 9045 fodomfir 9218 epinid0 9495 cnvepnep 9504 wemapwe 9593 cotr3 14885 explecnv 15772 psssdm2 18487 ablfacrp 19947 cnfldfunALT 21276 cnfldfunALTOLD 21289 pjfval2 21616 ofco2 22336 iundisj2 25448 clwwlknondisj 30055 lejdiri 31483 cmbr3i 31544 nonbooli 31595 5oai 31605 3oalem5 31610 mayetes3i 31673 mdexchi 32279 disjpreima 32528 disjxpin 32532 iundisj2f 32534 xppreima 32588 iundisj2fi 32740 xpinpreima 33873 xpinpreima2 33874 ordtcnvNEW 33887 pprodcnveq 35861 dfiota3 35901 bj-inrab 36905 ptrest 37603 ftc1anclem6 37682 dmxrn 38350 xrnres3 38380 br2coss 38419 1cosscnvxrn 38456 refsymrels2 38546 dfeqvrels2 38569 dfeldisj5 38703 dnwech 43025 fgraphopab 43180 onfrALTlem5 44520 onfrALTlem4 44521 onfrALTlem5VD 44862 onfrALTlem4VD 44863 disjxp1 45051 disjinfi 45174 oppczeroo 49226 |
| Copyright terms: Public domain | W3C validator |