![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
ineq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | ineq12 4236 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 |
This theorem is referenced by: undir 4306 difundi 4309 difindir 4312 inrab 4335 inrab2 4336 elneldisj 4415 dfif4 4563 dfif5 4564 inxpOLD 5857 resindi 6025 resindir 6026 rnin 6178 inimass 6186 cnvrescnv 6226 predin 6359 funtp 6635 orduniss2 7869 offres 8024 fodomr 9194 fodomfir 9396 epinid0 9669 cnvepnep 9677 wemapwe 9766 cotr3 15027 explecnv 15913 psssdm2 18651 ablfacrp 20110 cnfldfunALT 21402 cnfldfunALTOLD 21415 cnfldfunALTOLDOLD 21416 pjfval2 21752 ofco2 22478 iundisj2 25603 clwwlknondisj 30143 lejdiri 31571 cmbr3i 31632 nonbooli 31683 5oai 31693 3oalem5 31698 mayetes3i 31761 mdexchi 32367 disjpreima 32606 disjxpin 32610 iundisj2f 32612 xppreima 32664 iundisj2fi 32802 xpinpreima 33852 xpinpreima2 33853 ordtcnvNEW 33866 pprodcnveq 35847 dfiota3 35887 bj-inrab 36893 ptrest 37579 ftc1anclem6 37658 xrnres3 38360 br2coss 38394 1cosscnvxrn 38431 refsymrels2 38521 dfeqvrels2 38544 dfeldisj5 38677 dnwech 43005 fgraphopab 43164 onfrALTlem5 44513 onfrALTlem4 44514 onfrALTlem5VD 44856 onfrALTlem4VD 44857 disjxp1 44971 disjinfi 45099 |
Copyright terms: Public domain | W3C validator |