![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
ineq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | ineq12 4207 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∩ cin 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-in 3955 |
This theorem is referenced by: undir 4276 difundi 4279 difindir 4282 inrab 4306 inrab2 4307 elneldisj 4388 dfif4 4543 dfif5 4544 inxp 5832 resindi 5997 resindir 5998 rnin 6146 inimass 6154 cnvrescnv 6194 predin 6328 funtp 6605 orduniss2 7823 offres 7972 fodomr 9130 epinid0 9597 cnvepnep 9605 wemapwe 9694 cotr3 14929 explecnv 15815 psssdm2 18538 ablfacrp 19977 cnfldfunALT 21157 cnfldfunALTOLD 21158 pjfval2 21483 ofco2 22173 iundisj2 25290 clwwlknondisj 29619 lejdiri 31047 cmbr3i 31108 nonbooli 31159 5oai 31169 3oalem5 31174 mayetes3i 31237 mdexchi 31843 disjpreima 32070 disjxpin 32074 iundisj2f 32076 xppreima 32126 iundisj2fi 32263 xpinpreima 33172 xpinpreima2 33173 ordtcnvNEW 33186 pprodcnveq 35147 dfiota3 35187 gg-cnfldfunALT 35484 bj-inrab 36110 ptrest 36790 ftc1anclem6 36869 xrnres3 37577 br2coss 37611 1cosscnvxrn 37648 refsymrels2 37738 dfeqvrels2 37761 dfeldisj5 37894 dnwech 42092 fgraphopab 42254 onfrALTlem5 43605 onfrALTlem4 43606 onfrALTlem5VD 43948 onfrALTlem4VD 43949 disjxp1 44058 disjinfi 44190 |
Copyright terms: Public domain | W3C validator |