Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
ineq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | ineq12 4141 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-in 3894 |
This theorem is referenced by: undir 4210 difundi 4213 difindir 4216 inrab 4240 inrab2 4241 elneldisj 4322 dfif4 4474 dfif5 4475 inxp 5741 resindi 5907 resindir 5908 rnin 6050 inimass 6058 cnvrescnv 6098 predin 6230 funtp 6491 orduniss2 7680 offres 7826 fodomr 8915 epinid0 9359 cnvepnep 9366 wemapwe 9455 cotr3 14689 explecnv 15577 psssdm2 18299 ablfacrp 19669 cnfldfunALT 20610 cnfldfunALTOLD 20611 pjfval2 20916 ofco2 21600 iundisj2 24713 clwwlknondisj 28475 lejdiri 29901 cmbr3i 29962 nonbooli 30013 5oai 30023 3oalem5 30028 mayetes3i 30091 mdexchi 30697 disjpreima 30923 disjxpin 30927 iundisj2f 30929 xppreima 30983 iundisj2fi 31118 xpinpreima 31856 xpinpreima2 31857 ordtcnvNEW 31870 pprodcnveq 34185 dfiota3 34225 bj-inrab 35115 ptrest 35776 ftc1anclem6 35855 xrnres3 36530 br2coss 36561 1cosscnvxrn 36593 refsymrels2 36679 dfeqvrels2 36701 dfeldisj5 36832 dnwech 40873 fgraphopab 41035 onfrALTlem5 42162 onfrALTlem4 42163 onfrALTlem5VD 42505 onfrALTlem4VD 42506 disjxp1 42617 disjinfi 42731 |
Copyright terms: Public domain | W3C validator |