| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| ineq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | ineq12 4174 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-in 3918 |
| This theorem is referenced by: undir 4246 difundi 4249 difindir 4252 inrab 4275 inrab2 4276 elneldisj 4351 dfif4 4500 dfif5 4501 inxpOLD 5786 resindi 5955 resindir 5956 rnin 6107 inimass 6116 cnvrescnv 6156 predin 6288 funtp 6557 orduniss2 7788 offres 7941 fodomr 9069 fodomfir 9255 epinid0 9529 cnvepnep 9537 wemapwe 9626 cotr3 14920 explecnv 15807 psssdm2 18522 ablfacrp 19982 cnfldfunALT 21311 cnfldfunALTOLD 21324 pjfval2 21651 ofco2 22371 iundisj2 25483 clwwlknondisj 30090 lejdiri 31518 cmbr3i 31579 nonbooli 31630 5oai 31640 3oalem5 31645 mayetes3i 31708 mdexchi 32314 disjpreima 32563 disjxpin 32567 iundisj2f 32569 xppreima 32619 iundisj2fi 32770 xpinpreima 33889 xpinpreima2 33890 ordtcnvNEW 33903 pprodcnveq 35864 dfiota3 35904 bj-inrab 36908 ptrest 37606 ftc1anclem6 37685 dmxrn 38353 xrnres3 38383 br2coss 38422 1cosscnvxrn 38459 refsymrels2 38549 dfeqvrels2 38572 dfeldisj5 38706 dnwech 43030 fgraphopab 43185 onfrALTlem5 44525 onfrALTlem4 44526 onfrALTlem5VD 44867 onfrALTlem4VD 44868 disjxp1 45056 disjinfi 45179 oppczeroo 49219 |
| Copyright terms: Public domain | W3C validator |