| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| ineq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | ineq12 4195 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-in 3938 |
| This theorem is referenced by: undir 4267 difundi 4270 difindir 4273 inrab 4296 inrab2 4297 elneldisj 4372 dfif4 4521 dfif5 4522 inxpOLD 5817 resindi 5987 resindir 5988 rnin 6140 inimass 6149 cnvrescnv 6189 predin 6321 funtp 6598 orduniss2 7832 offres 7987 fodomr 9147 fodomfir 9345 epinid0 9619 cnvepnep 9627 wemapwe 9716 cotr3 15002 explecnv 15886 psssdm2 18596 ablfacrp 20054 cnfldfunALT 21335 cnfldfunALTOLD 21348 pjfval2 21674 ofco2 22394 iundisj2 25507 clwwlknondisj 30097 lejdiri 31525 cmbr3i 31586 nonbooli 31637 5oai 31647 3oalem5 31652 mayetes3i 31715 mdexchi 32321 disjpreima 32570 disjxpin 32574 iundisj2f 32576 xppreima 32628 iundisj2fi 32779 xpinpreima 33942 xpinpreima2 33943 ordtcnvNEW 33956 pprodcnveq 35906 dfiota3 35946 bj-inrab 36950 ptrest 37648 ftc1anclem6 37727 xrnres3 38427 br2coss 38461 1cosscnvxrn 38498 refsymrels2 38588 dfeqvrels2 38611 dfeldisj5 38744 dnwech 43039 fgraphopab 43194 onfrALTlem5 44534 onfrALTlem4 44535 onfrALTlem5VD 44876 onfrALTlem4VD 44877 disjxp1 45060 disjinfi 45183 oppczeroo 49121 |
| Copyright terms: Public domain | W3C validator |