| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| ineq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | ineq12 4178 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 |
| This theorem is referenced by: undir 4250 difundi 4253 difindir 4256 inrab 4279 inrab2 4280 elneldisj 4355 dfif4 4504 dfif5 4505 inxpOLD 5796 resindi 5966 resindir 5967 rnin 6119 inimass 6128 cnvrescnv 6168 predin 6300 funtp 6573 orduniss2 7808 offres 7962 fodomr 9092 fodomfir 9279 epinid0 9553 cnvepnep 9561 wemapwe 9650 cotr3 14944 explecnv 15831 psssdm2 18540 ablfacrp 19998 cnfldfunALT 21279 cnfldfunALTOLD 21292 pjfval2 21618 ofco2 22338 iundisj2 25450 clwwlknondisj 30040 lejdiri 31468 cmbr3i 31529 nonbooli 31580 5oai 31590 3oalem5 31595 mayetes3i 31658 mdexchi 32264 disjpreima 32513 disjxpin 32517 iundisj2f 32519 xppreima 32569 iundisj2fi 32720 xpinpreima 33896 xpinpreima2 33897 ordtcnvNEW 33910 pprodcnveq 35871 dfiota3 35911 bj-inrab 36915 ptrest 37613 ftc1anclem6 37692 dmxrn 38360 xrnres3 38390 br2coss 38429 1cosscnvxrn 38466 refsymrels2 38556 dfeqvrels2 38579 dfeldisj5 38713 dnwech 43037 fgraphopab 43192 onfrALTlem5 44532 onfrALTlem4 44533 onfrALTlem5VD 44874 onfrALTlem4VD 44875 disjxp1 45063 disjinfi 45186 oppczeroo 49223 |
| Copyright terms: Public domain | W3C validator |