Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
ineq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | ineq12 4138 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-in 3890 |
This theorem is referenced by: undir 4207 difundi 4210 difindir 4213 inrab 4237 inrab2 4238 elneldisj 4319 dfif4 4471 dfif5 4472 inxp 5730 resindi 5896 resindir 5897 rnin 6039 inimass 6047 cnvrescnv 6087 predin 6219 funtp 6475 orduniss2 7655 offres 7799 fodomr 8864 epinid0 9289 cnvepnep 9296 wemapwe 9385 cotr3 14617 explecnv 15505 psssdm2 18214 ablfacrp 19584 cnfldfun 20522 pjfval2 20826 ofco2 21508 iundisj2 24618 clwwlknondisj 28376 lejdiri 29802 cmbr3i 29863 nonbooli 29914 5oai 29924 3oalem5 29929 mayetes3i 29992 mdexchi 30598 disjpreima 30824 disjxpin 30828 iundisj2f 30830 xppreima 30884 iundisj2fi 31020 xpinpreima 31758 xpinpreima2 31759 ordtcnvNEW 31772 pprodcnveq 34112 dfiota3 34152 bj-inrab 35042 ptrest 35703 ftc1anclem6 35782 xrnres3 36457 br2coss 36488 1cosscnvxrn 36520 refsymrels2 36606 dfeqvrels2 36628 dfeldisj5 36759 dnwech 40789 fgraphopab 40951 onfrALTlem5 42051 onfrALTlem4 42052 onfrALTlem5VD 42394 onfrALTlem4VD 42395 disjxp1 42506 disjinfi 42620 |
Copyright terms: Public domain | W3C validator |