Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
ineq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | ineq12 4122 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∩ cin 3865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-in 3873 |
This theorem is referenced by: undir 4191 difundi 4194 difindir 4197 inrab 4221 inrab2 4222 elneldisj 4303 dfif4 4454 dfif5 4455 inxp 5701 resindi 5867 resindir 5868 rnin 6010 inimass 6018 cnvrescnv 6058 predin 6185 funtp 6437 orduniss2 7612 offres 7756 fodomr 8797 epinid0 9216 cnvepnep 9223 wemapwe 9312 cotr3 14541 explecnv 15429 psssdm2 18087 ablfacrp 19453 cnfldfun 20375 pjfval2 20671 ofco2 21348 iundisj2 24446 clwwlknondisj 28194 lejdiri 29620 cmbr3i 29681 nonbooli 29732 5oai 29742 3oalem5 29747 mayetes3i 29810 mdexchi 30416 disjpreima 30642 disjxpin 30646 iundisj2f 30648 xppreima 30702 iundisj2fi 30838 xpinpreima 31570 xpinpreima2 31571 ordtcnvNEW 31584 pprodcnveq 33922 dfiota3 33962 bj-inrab 34852 ptrest 35513 ftc1anclem6 35592 xrnres3 36267 br2coss 36298 1cosscnvxrn 36330 refsymrels2 36416 dfeqvrels2 36438 dfeldisj5 36569 dnwech 40576 fgraphopab 40738 onfrALTlem5 41835 onfrALTlem4 41836 onfrALTlem5VD 42178 onfrALTlem4VD 42179 disjxp1 42290 disjinfi 42404 |
Copyright terms: Public domain | W3C validator |