| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| ineq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | ineq12 4162 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3904 |
| This theorem is referenced by: undir 4234 difundi 4237 difindir 4240 inrab 4263 inrab2 4264 elneldisj 4339 dfif4 4488 dfif5 4489 inxpOLD 5771 resindi 5943 resindir 5944 rnin 6093 inimass 6102 cnvrescnv 6142 predin 6274 funtp 6538 orduniss2 7763 offres 7915 fodomr 9041 fodomfir 9212 epinid0 9489 cnvepnep 9498 wemapwe 9587 cotr3 14885 explecnv 15772 psssdm2 18487 ablfacrp 19980 cnfldfunALT 21306 cnfldfunALTOLD 21319 pjfval2 21646 ofco2 22366 iundisj2 25477 clwwlknondisj 30091 lejdiri 31519 cmbr3i 31580 nonbooli 31631 5oai 31641 3oalem5 31646 mayetes3i 31709 mdexchi 32315 disjpreima 32564 disjxpin 32568 iundisj2f 32570 xppreima 32627 iundisj2fi 32779 xpinpreima 33919 xpinpreima2 33920 ordtcnvNEW 33933 pprodcnveq 35925 dfiota3 35965 bj-inrab 36971 ptrest 37669 ftc1anclem6 37748 dmxrn 38421 xrnres3 38461 br2coss 38550 1cosscnvxrn 38587 refsymrels2 38671 dfeqvrels2 38694 dfeldisj5 38829 dnwech 43151 fgraphopab 43306 onfrALTlem5 44645 onfrALTlem4 44646 onfrALTlem5VD 44987 onfrALTlem4VD 44988 disjxp1 45176 disjinfi 45299 oppczeroo 49348 |
| Copyright terms: Public domain | W3C validator |