MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inindir Structured version   Visualization version   GIF version

Theorem inindir 4227
Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
inindir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem inindir
StepHypRef Expression
1 inidm 4218 . . 3 (𝐶𝐶) = 𝐶
21ineq2i 4209 . 2 ((𝐴𝐵) ∩ (𝐶𝐶)) = ((𝐴𝐵) ∩ 𝐶)
3 in4 4225 . 2 ((𝐴𝐵) ∩ (𝐶𝐶)) = ((𝐴𝐶) ∩ (𝐵𝐶))
42, 3eqtr3i 2761 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-in 3955
This theorem is referenced by:  difindir  4282  resindir  5998  predin  6328  restbas  22883  connsuba  23145  kgentopon  23263  trfbas2  23568  trfil2  23612  fclsrest  23749  trust  23955  chtdif  26899  ppidif  26904  mdslmd1lem1  31846  mdslmd1lem2  31847  mddmdin0i  31952  ballotlemgun  33822  cvmsss2  34564
  Copyright terms: Public domain W3C validator