| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inindir | Structured version Visualization version GIF version | ||
| Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| inindir | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 4193 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 2 | 1 | ineq2i 4183 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ 𝐶) |
| 3 | in4 4200 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | |
| 4 | 2, 3 | eqtr3i 2755 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 |
| This theorem is referenced by: difindir 4259 resindir 5970 predin 6303 restbas 23052 connsuba 23314 kgentopon 23432 trfbas2 23737 trfil2 23781 fclsrest 23918 trust 24124 chtdif 27075 ppidif 27080 mdslmd1lem1 32261 mdslmd1lem2 32262 mddmdin0i 32367 ballotlemgun 34523 cvmsss2 35268 |
| Copyright terms: Public domain | W3C validator |