Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inindir | Structured version Visualization version GIF version |
Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
inindir | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 4149 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
2 | 1 | ineq2i 4140 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ 𝐶) |
3 | in4 4156 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | |
4 | 2, 3 | eqtr3i 2768 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: difindir 4213 resindir 5897 predin 6219 restbas 22217 connsuba 22479 kgentopon 22597 trfbas2 22902 trfil2 22946 fclsrest 23083 trust 23289 chtdif 26212 ppidif 26217 mdslmd1lem1 30588 mdslmd1lem2 30589 mddmdin0i 30694 ballotlemgun 32391 cvmsss2 33136 |
Copyright terms: Public domain | W3C validator |