| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inindir | Structured version Visualization version GIF version | ||
| Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| inindir | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 4178 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 2 | 1 | ineq2i 4168 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ 𝐶) |
| 3 | in4 4185 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | |
| 4 | 2, 3 | eqtr3i 2754 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 |
| This theorem is referenced by: difindir 4244 resindir 5947 predin 6275 restbas 23043 connsuba 23305 kgentopon 23423 trfbas2 23728 trfil2 23772 fclsrest 23909 trust 24115 chtdif 27066 ppidif 27071 mdslmd1lem1 32269 mdslmd1lem2 32270 mddmdin0i 32375 ballotlemgun 34499 cvmsss2 35257 |
| Copyright terms: Public domain | W3C validator |