| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inindir | Structured version Visualization version GIF version | ||
| Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| inindir | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 4207 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 2 | 1 | ineq2i 4197 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ 𝐶) |
| 3 | in4 4214 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | |
| 4 | 2, 3 | eqtr3i 2761 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 |
| This theorem is referenced by: difindir 4273 resindir 5988 predin 6321 restbas 23101 connsuba 23363 kgentopon 23481 trfbas2 23786 trfil2 23830 fclsrest 23967 trust 24173 chtdif 27125 ppidif 27130 mdslmd1lem1 32311 mdslmd1lem2 32312 mddmdin0i 32417 ballotlemgun 34562 cvmsss2 35301 |
| Copyright terms: Public domain | W3C validator |