MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inindir Structured version   Visualization version   GIF version

Theorem inindir 4187
Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
inindir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem inindir
StepHypRef Expression
1 inidm 4178 . . 3 (𝐶𝐶) = 𝐶
21ineq2i 4168 . 2 ((𝐴𝐵) ∩ (𝐶𝐶)) = ((𝐴𝐵) ∩ 𝐶)
3 in4 4185 . 2 ((𝐴𝐵) ∩ (𝐶𝐶)) = ((𝐴𝐶) ∩ (𝐵𝐶))
42, 3eqtr3i 2754 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-in 3910
This theorem is referenced by:  difindir  4244  resindir  5947  predin  6275  restbas  23043  connsuba  23305  kgentopon  23423  trfbas2  23728  trfil2  23772  fclsrest  23909  trust  24115  chtdif  27066  ppidif  27071  mdslmd1lem1  32269  mdslmd1lem2  32270  mddmdin0i  32375  ballotlemgun  34499  cvmsss2  35257
  Copyright terms: Public domain W3C validator