MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inindir Structured version   Visualization version   GIF version

Theorem inindir 4244
Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
inindir ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem inindir
StepHypRef Expression
1 inidm 4235 . . 3 (𝐶𝐶) = 𝐶
21ineq2i 4225 . 2 ((𝐴𝐵) ∩ (𝐶𝐶)) = ((𝐴𝐵) ∩ 𝐶)
3 in4 4242 . 2 ((𝐴𝐵) ∩ (𝐶𝐶)) = ((𝐴𝐶) ∩ (𝐵𝐶))
42, 3eqtr3i 2765 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-in 3970
This theorem is referenced by:  difindir  4299  resindir  6017  predin  6350  restbas  23182  connsuba  23444  kgentopon  23562  trfbas2  23867  trfil2  23911  fclsrest  24048  trust  24254  chtdif  27216  ppidif  27221  mdslmd1lem1  32354  mdslmd1lem2  32355  mddmdin0i  32460  ballotlemgun  34506  cvmsss2  35259
  Copyright terms: Public domain W3C validator