![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inindir | Structured version Visualization version GIF version |
Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
inindir | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 4248 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
2 | 1 | ineq2i 4238 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ 𝐶) |
3 | in4 4255 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | |
4 | 2, 3 | eqtr3i 2770 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 |
This theorem is referenced by: difindir 4312 resindir 6026 predin 6359 restbas 23187 connsuba 23449 kgentopon 23567 trfbas2 23872 trfil2 23916 fclsrest 24053 trust 24259 chtdif 27219 ppidif 27224 mdslmd1lem1 32357 mdslmd1lem2 32358 mddmdin0i 32463 ballotlemgun 34489 cvmsss2 35242 |
Copyright terms: Public domain | W3C validator |