| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inindir | Structured version Visualization version GIF version | ||
| Description: Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| inindir | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 4174 | . . 3 ⊢ (𝐶 ∩ 𝐶) = 𝐶 | |
| 2 | 1 | ineq2i 4164 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ 𝐶) |
| 3 | in4 4181 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | |
| 4 | 2, 3 | eqtr3i 2756 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 |
| This theorem is referenced by: difindir 4240 resindir 5944 predin 6274 restbas 23073 connsuba 23335 kgentopon 23453 trfbas2 23758 trfil2 23802 fclsrest 23939 trust 24144 chtdif 27095 ppidif 27100 mdslmd1lem1 32305 mdslmd1lem2 32306 mddmdin0i 32411 ballotlemgun 34538 cvmsss2 35318 |
| Copyright terms: Public domain | W3C validator |