![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predun | Structured version Visualization version GIF version |
Description: Union law for predecessor classes. (Contributed by Scott Fenton, 29-Mar-2011.) |
Ref | Expression |
---|---|
predun | ⊢ Pred(𝑅, (𝐴 ∪ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ Pred(𝑅, 𝐵, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 4292 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (◡𝑅 “ {𝑋})) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∪ (𝐵 ∩ (◡𝑅 “ {𝑋}))) | |
2 | df-pred 6323 | . 2 ⊢ Pred(𝑅, (𝐴 ∪ 𝐵), 𝑋) = ((𝐴 ∪ 𝐵) ∩ (◡𝑅 “ {𝑋})) | |
3 | df-pred 6323 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
4 | df-pred 6323 | . . 3 ⊢ Pred(𝑅, 𝐵, 𝑋) = (𝐵 ∩ (◡𝑅 “ {𝑋})) | |
5 | 3, 4 | uneq12i 4176 | . 2 ⊢ (Pred(𝑅, 𝐴, 𝑋) ∪ Pred(𝑅, 𝐵, 𝑋)) = ((𝐴 ∩ (◡𝑅 “ {𝑋})) ∪ (𝐵 ∩ (◡𝑅 “ {𝑋}))) |
6 | 1, 2, 5 | 3eqtr4i 2773 | 1 ⊢ Pred(𝑅, (𝐴 ∪ 𝐵), 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ Pred(𝑅, 𝐵, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∪ cun 3961 ∩ cin 3962 {csn 4631 ◡ccnv 5688 “ cima 5692 Predcpred 6322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-un 3968 df-in 3970 df-pred 6323 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |