![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psstrd | Structured version Visualization version GIF version |
Description: Proper subclass inclusion is transitive. Deduction form of psstr 4097. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
psstrd.1 | ⊢ (𝜑 → 𝐴 ⊊ 𝐵) |
psstrd.2 | ⊢ (𝜑 → 𝐵 ⊊ 𝐶) |
Ref | Expression |
---|---|
psstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | |
2 | psstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊊ 𝐶) | |
3 | psstr 4097 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊊ wpss 3942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-v 3468 df-in 3948 df-ss 3958 df-pss 3960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |