MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psstrd Structured version   Visualization version   GIF version

Theorem psstrd 4100
Description: Proper subclass inclusion is transitive. Deduction form of psstr 4097. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psstrd.1 (𝜑𝐴𝐵)
psstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
psstrd (𝜑𝐴𝐶)

Proof of Theorem psstrd
StepHypRef Expression
1 psstrd.1 . 2 (𝜑𝐴𝐵)
2 psstrd.2 . 2 (𝜑𝐵𝐶)
3 psstr 4097 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2anc 583 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wpss 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-v 3468  df-in 3948  df-ss 3958  df-pss 3960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator