MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psstrd Structured version   Visualization version   GIF version

Theorem psstrd 4039
Description: Proper subclass inclusion is transitive. Deduction form of psstr 4036. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psstrd.1 (𝜑𝐴𝐵)
psstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
psstrd (𝜑𝐴𝐶)

Proof of Theorem psstrd
StepHypRef Expression
1 psstrd.1 . 2 (𝜑𝐴𝐵)
2 psstrd.2 . 2 (𝜑𝐵𝐶)
3 psstr 4036 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2anc 587 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wpss 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ne 2944  df-v 3425  df-in 3891  df-ss 3901  df-pss 3903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator