Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psstrd Structured version   Visualization version   GIF version

Theorem psstrd 3940
 Description: Proper subclass inclusion is transitive. Deduction form of psstr 3937. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psstrd.1 (𝜑𝐴𝐵)
psstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
psstrd (𝜑𝐴𝐶)

Proof of Theorem psstrd
StepHypRef Expression
1 psstrd.1 . 2 (𝜑𝐴𝐵)
2 psstrd.2 . 2 (𝜑𝐵𝐶)
3 psstr 3937 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2anc 581 1 (𝜑𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ⊊ wpss 3799 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-ext 2803 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-ne 3000  df-in 3805  df-ss 3812  df-pss 3814 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator