MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssstr Structured version   Visualization version   GIF version

Theorem psssstr 4059
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
Assertion
Ref Expression
psssstr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem psssstr
StepHypRef Expression
1 sspss 4052 . 2 (𝐵𝐶 ↔ (𝐵𝐶𝐵 = 𝐶))
2 psstr 4057 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
32ex 412 . . . 4 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
4 psseq2 4041 . . . . 5 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
54biimpcd 249 . . . 4 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
63, 5jaod 859 . . 3 (𝐴𝐵 → ((𝐵𝐶𝐵 = 𝐶) → 𝐴𝐶))
76imp 406 . 2 ((𝐴𝐵 ∧ (𝐵𝐶𝐵 = 𝐶)) → 𝐴𝐶)
81, 7sylan2b 594 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wss 3902  wpss 3903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-cleq 2723  df-ne 2929  df-ss 3919  df-pss 3922
This theorem is referenced by:  psssstrd  4062  suplem1pr  10943  atexch  32359  bj-2upln0  37063  bj-2upln1upl  37064
  Copyright terms: Public domain W3C validator