MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssstr Structured version   Visualization version   GIF version

Theorem psssstr 4041
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.)
Assertion
Ref Expression
psssstr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem psssstr
StepHypRef Expression
1 sspss 4034 . 2 (𝐵𝐶 ↔ (𝐵𝐶𝐵 = 𝐶))
2 psstr 4039 . . . . 5 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
32ex 413 . . . 4 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
4 psseq2 4023 . . . . 5 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
54biimpcd 248 . . . 4 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
63, 5jaod 856 . . 3 (𝐴𝐵 → ((𝐵𝐶𝐵 = 𝐶) → 𝐴𝐶))
76imp 407 . 2 ((𝐴𝐵 ∧ (𝐵𝐶𝐵 = 𝐶)) → 𝐴𝐶)
81, 7sylan2b 594 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wss 3887  wpss 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-in 3894  df-ss 3904  df-pss 3906
This theorem is referenced by:  psssstrd  4044  suplem1pr  10808  atexch  30743  bj-2upln0  35213  bj-2upln1upl  35214
  Copyright terms: Public domain W3C validator