![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psssstr | Structured version Visualization version GIF version |
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
psssstr | ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 4094 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶)) | |
2 | psstr 4099 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
3 | 2 | ex 412 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
4 | psseq2 4083 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ 𝐶)) | |
5 | 4 | biimpcd 248 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 = 𝐶 → 𝐴 ⊊ 𝐶)) |
6 | 3, 5 | jaod 856 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → ((𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ⊊ 𝐶)) |
7 | 6 | imp 406 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶)) → 𝐴 ⊊ 𝐶) |
8 | 1, 7 | sylan2b 593 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ⊆ wss 3943 ⊊ wpss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-v 3470 df-in 3950 df-ss 3960 df-pss 3962 |
This theorem is referenced by: psssstrd 4104 suplem1pr 11046 atexch 32138 bj-2upln0 36410 bj-2upln1upl 36411 |
Copyright terms: Public domain | W3C validator |