Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psssstr | Structured version Visualization version GIF version |
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
psssstr | ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 4006 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶)) | |
2 | psstr 4011 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
3 | 2 | ex 417 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
4 | psseq2 3995 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ 𝐶)) | |
5 | 4 | biimpcd 252 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 = 𝐶 → 𝐴 ⊊ 𝐶)) |
6 | 3, 5 | jaod 857 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → ((𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ⊊ 𝐶)) |
7 | 6 | imp 411 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶)) → 𝐴 ⊊ 𝐶) |
8 | 1, 7 | sylan2b 597 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∨ wo 845 = wceq 1539 ⊆ wss 3859 ⊊ wpss 3860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ne 2953 df-v 3412 df-in 3866 df-ss 3876 df-pss 3878 |
This theorem is referenced by: psssstrd 4016 suplem1pr 10502 atexch 30253 bj-2upln0 34730 bj-2upln1upl 34731 |
Copyright terms: Public domain | W3C validator |