![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psssstr | Structured version Visualization version GIF version |
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
psssstr | ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 3903 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶)) | |
2 | psstr 3908 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
3 | 2 | ex 402 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
4 | psseq2 3892 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ 𝐶)) | |
5 | 4 | biimpcd 241 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 = 𝐶 → 𝐴 ⊊ 𝐶)) |
6 | 3, 5 | jaod 886 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → ((𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ⊊ 𝐶)) |
7 | 6 | imp 396 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶)) → 𝐴 ⊊ 𝐶) |
8 | 1, 7 | sylan2b 588 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∨ wo 874 = wceq 1653 ⊆ wss 3769 ⊊ wpss 3770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-ne 2972 df-in 3776 df-ss 3783 df-pss 3785 |
This theorem is referenced by: psssstrd 3913 suplem1pr 10162 atexch 29765 bj-2upln0 33503 bj-2upln1upl 33504 |
Copyright terms: Public domain | W3C validator |