![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psssstr | Structured version Visualization version GIF version |
Description: Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
psssstr | ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 4099 | . 2 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶)) | |
2 | psstr 4104 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
3 | 2 | ex 411 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 ⊊ 𝐶 → 𝐴 ⊊ 𝐶)) |
4 | psseq2 4088 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝐴 ⊊ 𝐵 ↔ 𝐴 ⊊ 𝐶)) | |
5 | 4 | biimpcd 248 | . . . 4 ⊢ (𝐴 ⊊ 𝐵 → (𝐵 = 𝐶 → 𝐴 ⊊ 𝐶)) |
6 | 3, 5 | jaod 857 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → ((𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ⊊ 𝐶)) |
7 | 6 | imp 405 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ (𝐵 ⊊ 𝐶 ∨ 𝐵 = 𝐶)) → 𝐴 ⊊ 𝐶) |
8 | 1, 7 | sylan2b 592 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ⊆ wss 3949 ⊊ wpss 3950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-v 3475 df-in 3956 df-ss 3966 df-pss 3968 |
This theorem is referenced by: psssstrd 4109 suplem1pr 11083 atexch 32211 bj-2upln0 36535 bj-2upln1upl 36536 |
Copyright terms: Public domain | W3C validator |