MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psstr Structured version   Visualization version   GIF version

Theorem psstr 4057
Description: Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
psstr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem psstr
StepHypRef Expression
1 pssss 4048 . . 3 (𝐴𝐵𝐴𝐵)
2 pssss 4048 . . 3 (𝐵𝐶𝐵𝐶)
31, 2sylan9ss 3948 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 pssn2lp 4054 . . . 4 ¬ (𝐶𝐵𝐵𝐶)
5 psseq1 4040 . . . . 5 (𝐴 = 𝐶 → (𝐴𝐵𝐶𝐵))
65anbi1d 631 . . . 4 (𝐴 = 𝐶 → ((𝐴𝐵𝐵𝐶) ↔ (𝐶𝐵𝐵𝐶)))
74, 6mtbiri 327 . . 3 (𝐴 = 𝐶 → ¬ (𝐴𝐵𝐵𝐶))
87con2i 139 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴 = 𝐶)
9 dfpss2 4038 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 = 𝐶))
103, 8, 9sylanbrc 583 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wss 3902  wpss 3903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ne 2929  df-ss 3919  df-pss 3922
This theorem is referenced by:  sspsstr  4058  psssstr  4059  psstrd  4060  porpss  7660  inf3lem5  9522  ltsopr  10920
  Copyright terms: Public domain W3C validator