![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psstr | Structured version Visualization version GIF version |
Description: Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psstr | ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssss 4088 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | pssss 4088 | . . 3 ⊢ (𝐵 ⊊ 𝐶 → 𝐵 ⊆ 𝐶) | |
3 | 1, 2 | sylan9ss 3988 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊆ 𝐶) |
4 | pssn2lp 4094 | . . . 4 ⊢ ¬ (𝐶 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) | |
5 | psseq1 4080 | . . . . 5 ⊢ (𝐴 = 𝐶 → (𝐴 ⊊ 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
6 | 5 | anbi1d 629 | . . . 4 ⊢ (𝐴 = 𝐶 → ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) ↔ (𝐶 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶))) |
7 | 4, 6 | mtbiri 327 | . . 3 ⊢ (𝐴 = 𝐶 → ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶)) |
8 | 7 | con2i 139 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → ¬ 𝐴 = 𝐶) |
9 | dfpss2 4078 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶)) | |
10 | 3, 8, 9 | sylanbrc 582 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ⊆ wss 3941 ⊊ wpss 3942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-v 3468 df-in 3948 df-ss 3958 df-pss 3960 |
This theorem is referenced by: sspsstr 4098 psssstr 4099 psstrd 4100 porpss 7711 inf3lem5 9624 ltsopr 11024 |
Copyright terms: Public domain | W3C validator |