![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psstr | Structured version Visualization version GIF version |
Description: Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psstr | ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssss 4093 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | pssss 4093 | . . 3 ⊢ (𝐵 ⊊ 𝐶 → 𝐵 ⊆ 𝐶) | |
3 | 1, 2 | sylan9ss 3993 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊆ 𝐶) |
4 | pssn2lp 4099 | . . . 4 ⊢ ¬ (𝐶 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) | |
5 | psseq1 4085 | . . . . 5 ⊢ (𝐴 = 𝐶 → (𝐴 ⊊ 𝐵 ↔ 𝐶 ⊊ 𝐵)) | |
6 | 5 | anbi1d 630 | . . . 4 ⊢ (𝐴 = 𝐶 → ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) ↔ (𝐶 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶))) |
7 | 4, 6 | mtbiri 327 | . . 3 ⊢ (𝐴 = 𝐶 → ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶)) |
8 | 7 | con2i 139 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → ¬ 𝐴 = 𝐶) |
9 | dfpss2 4083 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶)) | |
10 | 3, 8, 9 | sylanbrc 582 | 1 ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ⊆ wss 3947 ⊊ wpss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-v 3473 df-in 3954 df-ss 3964 df-pss 3966 |
This theorem is referenced by: sspsstr 4103 psssstr 4104 psstrd 4105 porpss 7732 inf3lem5 9655 ltsopr 11055 |
Copyright terms: Public domain | W3C validator |