Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspsstrd | Structured version Visualization version GIF version |
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 4036. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
sspsstrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sspsstrd.2 | ⊢ (𝜑 → 𝐵 ⊊ 𝐶) |
Ref | Expression |
---|---|
sspsstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspsstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sspsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊊ 𝐶) | |
3 | sspsstr 4036 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 ⊊ wpss 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-in 3890 df-ss 3900 df-pss 3902 |
This theorem is referenced by: marypha1lem 9122 ackbij1lem15 9921 fin23lem38 10036 ltexprlem2 10724 mrieqv2d 17265 |
Copyright terms: Public domain | W3C validator |