MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspsstrd Structured version   Visualization version   GIF version

Theorem sspsstrd 4060
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 4057. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
sspsstrd.1 (𝜑𝐴𝐵)
sspsstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
sspsstrd (𝜑𝐴𝐶)

Proof of Theorem sspsstrd
StepHypRef Expression
1 sspsstrd.1 . 2 (𝜑𝐴𝐵)
2 sspsstrd.2 . 2 (𝜑𝐵𝐶)
3 sspsstr 4057 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2anc 584 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3898  wpss 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-cleq 2725  df-ne 2930  df-ss 3915  df-pss 3918
This theorem is referenced by:  marypha1lem  9324  ackbij1lem15  10131  fin23lem38  10247  ltexprlem2  10935  mrieqv2d  17547
  Copyright terms: Public domain W3C validator