![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspsstrd | Structured version Visualization version GIF version |
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 4106. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
sspsstrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sspsstrd.2 | ⊢ (𝜑 → 𝐵 ⊊ 𝐶) |
Ref | Expression |
---|---|
sspsstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspsstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sspsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊊ 𝐶) | |
3 | sspsstr 4106 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3949 ⊊ wpss 3950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-in 3956 df-ss 3966 df-pss 3968 |
This theorem is referenced by: marypha1lem 9431 ackbij1lem15 10232 fin23lem38 10347 ltexprlem2 11035 mrieqv2d 17588 |
Copyright terms: Public domain | W3C validator |