| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspsstrd | Structured version Visualization version GIF version | ||
| Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 4083. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| sspsstrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sspsstrd.2 | ⊢ (𝜑 → 𝐵 ⊊ 𝐶) |
| Ref | Expression |
|---|---|
| sspsstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspsstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊊ 𝐶) | |
| 3 | sspsstr 4083 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 ⊊ wpss 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-cleq 2727 df-ne 2933 df-ss 3943 df-pss 3946 |
| This theorem is referenced by: marypha1lem 9445 ackbij1lem15 10247 fin23lem38 10363 ltexprlem2 11051 mrieqv2d 17651 |
| Copyright terms: Public domain | W3C validator |