| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspsstrd | Structured version Visualization version GIF version | ||
| Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 4057. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| sspsstrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sspsstrd.2 | ⊢ (𝜑 → 𝐵 ⊊ 𝐶) |
| Ref | Expression |
|---|---|
| sspsstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspsstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊊ 𝐶) | |
| 3 | sspsstr 4057 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 ⊊ wpss 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-cleq 2725 df-ne 2930 df-ss 3915 df-pss 3918 |
| This theorem is referenced by: marypha1lem 9324 ackbij1lem15 10131 fin23lem38 10247 ltexprlem2 10935 mrieqv2d 17547 |
| Copyright terms: Public domain | W3C validator |