MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwidb Structured version   Visualization version   GIF version

Theorem pwidb 4620
Description: A class is an element of its powerclass if and only if it is a set. (Contributed by BJ, 31-Dec-2023.)
Assertion
Ref Expression
pwidb (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴)

Proof of Theorem pwidb
StepHypRef Expression
1 pwidg 4619 . 2 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
2 elex 3500 . 2 (𝐴 ∈ 𝒫 𝐴𝐴 ∈ V)
31, 2impbii 209 1 (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2107  Vcvv 3479  𝒫 cpw 4599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-ss 3967  df-pw 4601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator