MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwidb Structured version   Visualization version   GIF version

Theorem pwidb 4553
Description: A class is an element of its powerclass if and only if it is a set. (Contributed by BJ, 31-Dec-2023.)
Assertion
Ref Expression
pwidb (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴)

Proof of Theorem pwidb
StepHypRef Expression
1 pwidg 4552 . 2 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
2 elex 3440 . 2 (𝐴 ∈ 𝒫 𝐴𝐴 ∈ V)
31, 2impbii 208 1 (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2108  Vcvv 3422  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator