![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwidb | Structured version Visualization version GIF version |
Description: A class is an element of its powerclass if and only if it is a set. (Contributed by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
pwidb | ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg 4642 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
2 | elex 3509 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐴 → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |