![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwidb | Structured version Visualization version GIF version |
Description: A class is an element of its powerclass if and only if it is a set. (Contributed by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
pwidb | ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg 4623 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
2 | elex 3490 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐴 → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 208 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2099 Vcvv 3471 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-pw 4605 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |