![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwidb | Structured version Visualization version GIF version |
Description: A class is an element of its powerclass if and only if it is a set. (Contributed by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
pwidb | ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwidg 4625 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
2 | elex 3499 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐴 → 𝐴 ∈ V) | |
3 | 1, 2 | impbii 209 | 1 ⊢ (𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 Vcvv 3478 𝒫 cpw 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-pw 4607 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |