![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version |
Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4018 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | elpwg 4608 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 𝒫 cpw 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 df-pw 4607 |
This theorem is referenced by: pwidb 4626 pwid 4627 axpweq 5357 knatar 7377 brwdom2 9611 pwwf 9845 rankpwi 9861 canthp1lem2 10691 canthp1 10692 mremre 17649 submre 17650 baspartn 22977 fctop 23027 cctop 23029 ppttop 23030 epttop 23032 isopn3 23090 mretopd 23116 tsmsfbas 24152 gsumesum 34040 esumcst 34044 pwsiga 34111 prsiga 34112 sigainb 34117 pwldsys 34138 ldgenpisyslem1 34144 carsggect 34300 ex-sategoelel 35406 neibastop1 36342 neibastop2lem 36343 topdifinfindis 37329 elrfi 42682 dssmapnvod 44010 ntrk0kbimka 44029 clsk3nimkb 44030 neik0pk1imk0 44037 ntrclscls00 44056 ntrneicls00 44079 pwssfi 44985 dvnprodlem3 45904 caragenunidm 46464 |
Copyright terms: Public domain | W3C validator |