![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version |
Description: Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3849 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | elpwg 4387 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 250 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 ⊆ wss 3799 𝒫 cpw 4379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-v 3417 df-in 3806 df-ss 3813 df-pw 4381 |
This theorem is referenced by: pwid 4395 axpweq 5065 knatar 6863 brwdom2 8748 pwwf 8948 rankpwi 8964 canthp1lem2 9791 canthp1 9792 grothpw 9964 mremre 16618 submre 16619 baspartn 21130 fctop 21180 cctop 21182 ppttop 21183 epttop 21185 isopn3 21242 mretopd 21268 tsmsfbas 22302 gsumesum 30667 esumcst 30671 pwsiga 30739 prsiga 30740 sigainb 30745 pwldsys 30766 ldgenpisyslem1 30772 carsggect 30926 neibastop1 32893 neibastop2lem 32894 topdifinfindis 33740 elrfi 38102 dssmapnvod 39155 ntrk0kbimka 39178 clsk3nimkb 39179 neik0pk1imk0 39186 ntrclscls00 39205 ntrneicls00 39228 pwssfi 40029 dvnprodlem3 40959 caragenunidm 41517 |
Copyright terms: Public domain | W3C validator |