| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version | ||
| Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3957 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | elpwg 4553 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3919 df-pw 4552 |
| This theorem is referenced by: pwidb 4571 pwid 4572 axpweq 5289 knatar 7291 pwssfi 9086 brwdom2 9459 pwwf 9697 rankpwi 9713 canthp1lem2 10541 canthp1 10542 mremre 17503 submre 17504 baspartn 22867 fctop 22917 cctop 22919 ppttop 22920 epttop 22922 isopn3 22979 mretopd 23005 tsmsfbas 24041 exsslsb 33604 gsumesum 34067 esumcst 34071 pwsiga 34138 prsiga 34139 sigainb 34144 pwldsys 34165 ldgenpisyslem1 34171 carsggect 34326 ex-sategoelel 35453 neibastop1 36392 neibastop2lem 36393 topdifinfindis 37379 elrfi 42726 dssmapnvod 44052 ntrk0kbimka 44071 clsk3nimkb 44072 neik0pk1imk0 44079 ntrclscls00 44098 ntrneicls00 44121 dvnprodlem3 45985 caragenunidm 46545 |
| Copyright terms: Public domain | W3C validator |