MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwidg Structured version   Visualization version   GIF version

Theorem pwidg 4623
Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
pwidg (𝐴𝑉𝐴 ∈ 𝒫 𝐴)

Proof of Theorem pwidg
StepHypRef Expression
1 ssid 4005 . 2 𝐴𝐴
2 elpwg 4606 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
31, 2mpbiri 258 1 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wss 3949  𝒫 cpw 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-pw 4605
This theorem is referenced by:  pwidb  4624  pwid  4625  axpweq  5349  knatar  7354  brwdom2  9568  pwwf  9802  rankpwi  9818  canthp1lem2  10648  canthp1  10649  mremre  17548  submre  17549  baspartn  22457  fctop  22507  cctop  22509  ppttop  22510  epttop  22512  isopn3  22570  mretopd  22596  tsmsfbas  23632  gsumesum  33057  esumcst  33061  pwsiga  33128  prsiga  33129  sigainb  33134  pwldsys  33155  ldgenpisyslem1  33161  carsggect  33317  ex-sategoelel  34412  neibastop1  35244  neibastop2lem  35245  topdifinfindis  36227  elrfi  41432  dssmapnvod  42771  ntrk0kbimka  42790  clsk3nimkb  42791  neik0pk1imk0  42798  ntrclscls00  42817  ntrneicls00  42840  pwssfi  43732  dvnprodlem3  44664  caragenunidm  45224
  Copyright terms: Public domain W3C validator