Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version |
Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3916 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | elpwg 4500 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 261 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3860 𝒫 cpw 4497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 df-pw 4499 |
This theorem is referenced by: pwidb 4520 pwid 4521 axpweq 5236 knatar 7109 brwdom2 9075 pwwf 9274 rankpwi 9290 canthp1lem2 10118 canthp1 10119 mremre 16938 submre 16939 baspartn 21659 fctop 21709 cctop 21711 ppttop 21712 epttop 21714 isopn3 21771 mretopd 21797 tsmsfbas 22833 gsumesum 31550 esumcst 31554 pwsiga 31621 prsiga 31622 sigainb 31627 pwldsys 31648 ldgenpisyslem1 31654 carsggect 31808 ex-sategoelel 32903 neibastop1 34123 neibastop2lem 34124 topdifinfindis 35069 elrfi 40036 dssmapnvod 41122 ntrk0kbimka 41143 clsk3nimkb 41144 neik0pk1imk0 41151 ntrclscls00 41170 ntrneicls00 41193 pwssfi 42080 dvnprodlem3 42984 caragenunidm 43541 |
Copyright terms: Public domain | W3C validator |