MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwidg Structured version   Visualization version   GIF version

Theorem pwidg 4552
Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
pwidg (𝐴𝑉𝐴 ∈ 𝒫 𝐴)

Proof of Theorem pwidg
StepHypRef Expression
1 ssid 3939 . 2 𝐴𝐴
2 elpwg 4533 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
31, 2mpbiri 257 1 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  pwidb  4553  pwid  4554  axpweq  5282  knatar  7208  brwdom2  9262  pwwf  9496  rankpwi  9512  canthp1lem2  10340  canthp1  10341  mremre  17230  submre  17231  baspartn  22012  fctop  22062  cctop  22064  ppttop  22065  epttop  22067  isopn3  22125  mretopd  22151  tsmsfbas  23187  gsumesum  31927  esumcst  31931  pwsiga  31998  prsiga  31999  sigainb  32004  pwldsys  32025  ldgenpisyslem1  32031  carsggect  32185  ex-sategoelel  33283  neibastop1  34475  neibastop2lem  34476  topdifinfindis  35444  elrfi  40432  dssmapnvod  41517  ntrk0kbimka  41538  clsk3nimkb  41539  neik0pk1imk0  41546  ntrclscls00  41565  ntrneicls00  41588  pwssfi  42482  dvnprodlem3  43379  caragenunidm  43936
  Copyright terms: Public domain W3C validator