| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version | ||
| Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3986 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | elpwg 4583 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: pwidb 4601 pwid 4602 axpweq 5326 knatar 7355 pwssfi 9196 brwdom2 9592 pwwf 9826 rankpwi 9842 canthp1lem2 10672 canthp1 10673 mremre 17621 submre 17622 baspartn 22897 fctop 22947 cctop 22949 ppttop 22950 epttop 22952 isopn3 23009 mretopd 23035 tsmsfbas 24071 exsslsb 33641 gsumesum 34095 esumcst 34099 pwsiga 34166 prsiga 34167 sigainb 34172 pwldsys 34193 ldgenpisyslem1 34199 carsggect 34355 ex-sategoelel 35448 neibastop1 36382 neibastop2lem 36383 topdifinfindis 37369 elrfi 42684 dssmapnvod 44011 ntrk0kbimka 44030 clsk3nimkb 44031 neik0pk1imk0 44038 ntrclscls00 44057 ntrneicls00 44080 dvnprodlem3 45944 caragenunidm 46504 |
| Copyright terms: Public domain | W3C validator |