| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version | ||
| Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3960 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | elpwg 4556 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: pwidb 4574 pwid 4575 axpweq 5293 knatar 7298 pwssfi 9101 brwdom2 9484 pwwf 9722 rankpwi 9738 canthp1lem2 10566 canthp1 10567 mremre 17524 submre 17525 baspartn 22857 fctop 22907 cctop 22909 ppttop 22910 epttop 22912 isopn3 22969 mretopd 22995 tsmsfbas 24031 exsslsb 33568 gsumesum 34025 esumcst 34029 pwsiga 34096 prsiga 34097 sigainb 34102 pwldsys 34123 ldgenpisyslem1 34129 carsggect 34285 ex-sategoelel 35393 neibastop1 36332 neibastop2lem 36333 topdifinfindis 37319 elrfi 42667 dssmapnvod 43993 ntrk0kbimka 44012 clsk3nimkb 44013 neik0pk1imk0 44020 ntrclscls00 44039 ntrneicls00 44062 dvnprodlem3 45930 caragenunidm 46490 |
| Copyright terms: Public domain | W3C validator |