| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version | ||
| Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | elpwg 4569 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: pwidb 4587 pwid 4588 axpweq 5309 knatar 7335 pwssfi 9147 brwdom2 9533 pwwf 9767 rankpwi 9783 canthp1lem2 10613 canthp1 10614 mremre 17572 submre 17573 baspartn 22848 fctop 22898 cctop 22900 ppttop 22901 epttop 22903 isopn3 22960 mretopd 22986 tsmsfbas 24022 exsslsb 33599 gsumesum 34056 esumcst 34060 pwsiga 34127 prsiga 34128 sigainb 34133 pwldsys 34154 ldgenpisyslem1 34160 carsggect 34316 ex-sategoelel 35415 neibastop1 36354 neibastop2lem 36355 topdifinfindis 37341 elrfi 42689 dssmapnvod 44016 ntrk0kbimka 44035 clsk3nimkb 44036 neik0pk1imk0 44043 ntrclscls00 44062 ntrneicls00 44085 dvnprodlem3 45953 caragenunidm 46513 |
| Copyright terms: Public domain | W3C validator |