Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version |
Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | elpwg 4533 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: pwidb 4553 pwid 4554 axpweq 5282 knatar 7208 brwdom2 9262 pwwf 9496 rankpwi 9512 canthp1lem2 10340 canthp1 10341 mremre 17230 submre 17231 baspartn 22012 fctop 22062 cctop 22064 ppttop 22065 epttop 22067 isopn3 22125 mretopd 22151 tsmsfbas 23187 gsumesum 31927 esumcst 31931 pwsiga 31998 prsiga 31999 sigainb 32004 pwldsys 32025 ldgenpisyslem1 32031 carsggect 32185 ex-sategoelel 33283 neibastop1 34475 neibastop2lem 34476 topdifinfindis 35444 elrfi 40432 dssmapnvod 41517 ntrk0kbimka 41538 clsk3nimkb 41539 neik0pk1imk0 41546 ntrclscls00 41565 ntrneicls00 41588 pwssfi 42482 dvnprodlem3 43379 caragenunidm 43936 |
Copyright terms: Public domain | W3C validator |