| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version | ||
| Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | elpwg 4566 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: pwidb 4584 pwid 4585 axpweq 5306 knatar 7332 pwssfi 9141 brwdom2 9526 pwwf 9760 rankpwi 9776 canthp1lem2 10606 canthp1 10607 mremre 17565 submre 17566 baspartn 22841 fctop 22891 cctop 22893 ppttop 22894 epttop 22896 isopn3 22953 mretopd 22979 tsmsfbas 24015 exsslsb 33592 gsumesum 34049 esumcst 34053 pwsiga 34120 prsiga 34121 sigainb 34126 pwldsys 34147 ldgenpisyslem1 34153 carsggect 34309 ex-sategoelel 35408 neibastop1 36347 neibastop2lem 36348 topdifinfindis 37334 elrfi 42682 dssmapnvod 44009 ntrk0kbimka 44028 clsk3nimkb 44029 neik0pk1imk0 44036 ntrclscls00 44055 ntrneicls00 44078 dvnprodlem3 45946 caragenunidm 46506 |
| Copyright terms: Public domain | W3C validator |