![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version |
Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | elpwg 4625 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-pw 4624 |
This theorem is referenced by: pwidb 4643 pwid 4644 axpweq 5369 knatar 7393 brwdom2 9642 pwwf 9876 rankpwi 9892 canthp1lem2 10722 canthp1 10723 mremre 17662 submre 17663 baspartn 22982 fctop 23032 cctop 23034 ppttop 23035 epttop 23037 isopn3 23095 mretopd 23121 tsmsfbas 24157 gsumesum 34023 esumcst 34027 pwsiga 34094 prsiga 34095 sigainb 34100 pwldsys 34121 ldgenpisyslem1 34127 carsggect 34283 ex-sategoelel 35389 neibastop1 36325 neibastop2lem 36326 topdifinfindis 37312 elrfi 42650 dssmapnvod 43982 ntrk0kbimka 44001 clsk3nimkb 44002 neik0pk1imk0 44009 ntrclscls00 44028 ntrneicls00 44051 pwssfi 44947 dvnprodlem3 45869 caragenunidm 46429 |
Copyright terms: Public domain | W3C validator |