Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version |
Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3944 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | elpwg 4537 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 1, 2 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3888 𝒫 cpw 4534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-pw 4536 |
This theorem is referenced by: pwidb 4557 pwid 4558 axpweq 5288 knatar 7237 brwdom2 9341 pwwf 9574 rankpwi 9590 canthp1lem2 10418 canthp1 10419 mremre 17322 submre 17323 baspartn 22113 fctop 22163 cctop 22165 ppttop 22166 epttop 22168 isopn3 22226 mretopd 22252 tsmsfbas 23288 gsumesum 32036 esumcst 32040 pwsiga 32107 prsiga 32108 sigainb 32113 pwldsys 32134 ldgenpisyslem1 32140 carsggect 32294 ex-sategoelel 33392 neibastop1 34557 neibastop2lem 34558 topdifinfindis 35526 elrfi 40523 dssmapnvod 41635 ntrk0kbimka 41656 clsk3nimkb 41657 neik0pk1imk0 41664 ntrclscls00 41683 ntrneicls00 41706 pwssfi 42600 dvnprodlem3 43496 caragenunidm 44053 |
Copyright terms: Public domain | W3C validator |