| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwidg | Structured version Visualization version GIF version | ||
| Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| pwidg | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | elpwg 4552 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ss 3915 df-pw 4551 |
| This theorem is referenced by: pwidb 4570 pwid 4571 axpweq 5291 knatar 7297 pwssfi 9093 brwdom2 9466 pwwf 9707 rankpwi 9723 canthp1lem2 10551 canthp1 10552 mremre 17508 submre 17509 baspartn 22870 fctop 22920 cctop 22922 ppttop 22923 epttop 22925 isopn3 22982 mretopd 23008 tsmsfbas 24044 exsslsb 33630 gsumesum 34093 esumcst 34097 pwsiga 34164 prsiga 34165 sigainb 34170 pwldsys 34191 ldgenpisyslem1 34197 carsggect 34352 ex-sategoelel 35486 neibastop1 36424 neibastop2lem 36425 topdifinfindis 37411 elrfi 42811 dssmapnvod 44137 ntrk0kbimka 44156 clsk3nimkb 44157 neik0pk1imk0 44164 ntrclscls00 44183 ntrneicls00 44206 dvnprodlem3 46070 caragenunidm 46630 |
| Copyright terms: Public domain | W3C validator |