MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwidg Structured version   Visualization version   GIF version

Theorem pwidg 4586
Description: A set is an element of its power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
pwidg (𝐴𝑉𝐴 ∈ 𝒫 𝐴)

Proof of Theorem pwidg
StepHypRef Expression
1 ssid 3972 . 2 𝐴𝐴
2 elpwg 4569 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
31, 2mpbiri 258 1 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3917  𝒫 cpw 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ss 3934  df-pw 4568
This theorem is referenced by:  pwidb  4587  pwid  4588  axpweq  5309  knatar  7335  pwssfi  9147  brwdom2  9533  pwwf  9767  rankpwi  9783  canthp1lem2  10613  canthp1  10614  mremre  17572  submre  17573  baspartn  22848  fctop  22898  cctop  22900  ppttop  22901  epttop  22903  isopn3  22960  mretopd  22986  tsmsfbas  24022  exsslsb  33599  gsumesum  34056  esumcst  34060  pwsiga  34127  prsiga  34128  sigainb  34133  pwldsys  34154  ldgenpisyslem1  34160  carsggect  34316  ex-sategoelel  35415  neibastop1  36354  neibastop2lem  36355  topdifinfindis  37341  elrfi  42689  dssmapnvod  44016  ntrk0kbimka  44035  clsk3nimkb  44036  neik0pk1imk0  44043  ntrclscls00  44062  ntrneicls00  44085  dvnprodlem3  45953  caragenunidm  46513
  Copyright terms: Public domain W3C validator