Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwid | Structured version Visualization version GIF version |
Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pwid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwid | ⊢ 𝐴 ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwidg 4565 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 𝒫 cpw 4545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3904 df-ss 3914 df-pw 4547 |
This theorem is referenced by: pwnex 7651 r1ordg 9614 rankr1id 9698 cfss 10101 0ram 16798 evl1fval1lem 21579 bastg 22199 fincmp 22627 restlly 22717 ptbasfi 22815 zfbas 23130 ustfilxp 23447 minveclem3b 24675 wilthlem3 26302 coinflipprob 32586 mapdunirnN 39885 pwtrrVD 42679 vsetrec 46673 |
Copyright terms: Public domain | W3C validator |