Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwid | Structured version Visualization version GIF version |
Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pwid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwid | ⊢ 𝐴 ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwidg 4555 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: pwnex 7609 r1ordg 9536 rankr1id 9620 cfss 10021 0ram 16721 evl1fval1lem 21496 bastg 22116 fincmp 22544 restlly 22634 ptbasfi 22732 zfbas 23047 ustfilxp 23364 minveclem3b 24592 wilthlem3 26219 coinflipprob 32446 mapdunirnN 39664 pwtrrVD 42445 vsetrec 46408 |
Copyright terms: Public domain | W3C validator |