| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwid | Structured version Visualization version GIF version | ||
| Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pwid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwid | ⊢ 𝐴 ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwidg 4569 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ss 3915 df-pw 4551 |
| This theorem is referenced by: pwnex 7698 r1ordg 9678 rankr1id 9762 cfss 10163 0ram 16934 evl1fval1lem 22246 bastg 22882 fincmp 23309 restlly 23399 ptbasfi 23497 zfbas 23812 ustfilxp 24129 minveclem3b 25356 wilthlem3 27008 coinflipprob 34514 r1wf 35128 mapdunirnN 41769 pwtrrVD 44941 vsetrec 49828 |
| Copyright terms: Public domain | W3C validator |