| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwid | Structured version Visualization version GIF version | ||
| Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pwid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwid | ⊢ 𝐴 ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwidg 4570 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3919 df-pw 4552 |
| This theorem is referenced by: pwnex 7692 r1ordg 9668 rankr1id 9752 cfss 10153 0ram 16929 evl1fval1lem 22243 bastg 22879 fincmp 23306 restlly 23396 ptbasfi 23494 zfbas 23809 ustfilxp 24126 minveclem3b 25353 wilthlem3 27005 coinflipprob 34488 r1wf 35100 mapdunirnN 41688 pwtrrVD 44856 vsetrec 49734 |
| Copyright terms: Public domain | W3C validator |