| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwid | Structured version Visualization version GIF version | ||
| Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pwid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwid | ⊢ 𝐴 ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwidg 4595 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: pwnex 7753 r1ordg 9792 rankr1id 9876 cfss 10279 0ram 17040 evl1fval1lem 22268 bastg 22904 fincmp 23331 restlly 23421 ptbasfi 23519 zfbas 23834 ustfilxp 24151 minveclem3b 25380 wilthlem3 27032 coinflipprob 34512 mapdunirnN 41669 pwtrrVD 44849 vsetrec 49567 |
| Copyright terms: Public domain | W3C validator |