MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwid Structured version   Visualization version   GIF version

Theorem pwid 4644
Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
pwid.1 𝐴 ∈ V
Assertion
Ref Expression
pwid 𝐴 ∈ 𝒫 𝐴

Proof of Theorem pwid
StepHypRef Expression
1 pwid.1 . 2 𝐴 ∈ V
2 pwidg 4642 . 2 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
31, 2ax-mp 5 1 𝐴 ∈ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  𝒫 cpw 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ss 3993  df-pw 4624
This theorem is referenced by:  pwnex  7794  r1ordg  9847  rankr1id  9931  cfss  10334  0ram  17067  evl1fval1lem  22355  bastg  22994  fincmp  23422  restlly  23512  ptbasfi  23610  zfbas  23925  ustfilxp  24242  minveclem3b  25481  wilthlem3  27131  coinflipprob  34444  mapdunirnN  41607  pwtrrVD  44796  vsetrec  48795
  Copyright terms: Public domain W3C validator