| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwid | Structured version Visualization version GIF version | ||
| Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pwid.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwid | ⊢ 𝐴 ∈ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwid.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwidg 4586 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: pwnex 7738 r1ordg 9738 rankr1id 9822 cfss 10225 0ram 16998 evl1fval1lem 22224 bastg 22860 fincmp 23287 restlly 23377 ptbasfi 23475 zfbas 23790 ustfilxp 24107 minveclem3b 25335 wilthlem3 26987 coinflipprob 34478 mapdunirnN 41651 pwtrrVD 44821 vsetrec 49696 |
| Copyright terms: Public domain | W3C validator |