MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwid Structured version   Visualization version   GIF version

Theorem pwid 4572
Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
pwid.1 𝐴 ∈ V
Assertion
Ref Expression
pwid 𝐴 ∈ 𝒫 𝐴

Proof of Theorem pwid
StepHypRef Expression
1 pwid.1 . 2 𝐴 ∈ V
2 pwidg 4570 . 2 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
31, 2ax-mp 5 1 𝐴 ∈ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  𝒫 cpw 4550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ss 3919  df-pw 4552
This theorem is referenced by:  pwnex  7692  r1ordg  9668  rankr1id  9752  cfss  10153  0ram  16929  evl1fval1lem  22243  bastg  22879  fincmp  23306  restlly  23396  ptbasfi  23494  zfbas  23809  ustfilxp  24126  minveclem3b  25353  wilthlem3  27005  coinflipprob  34488  r1wf  35100  mapdunirnN  41688  pwtrrVD  44856  vsetrec  49734
  Copyright terms: Public domain W3C validator