| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.23t | Structured version Visualization version GIF version | ||
| Description: Closed theorem form of r19.23 3229. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| r19.23t | ⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23t 2213 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓))) | |
| 2 | df-ral 3048 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
| 3 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
| 4 | 3 | albii 1820 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) |
| 5 | 2, 4 | bitr4i 278 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) |
| 6 | df-rex 3057 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 7 | 6 | imbi1i 349 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) |
| 8 | 1, 5, 7 | 3bitr4g 314 | 1 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: r19.23 3229 rexlimd2 3238 riotasv3d 38999 |
| Copyright terms: Public domain | W3C validator |