Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.23t | Structured version Visualization version GIF version |
Description: Closed theorem form of r19.23 3247. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
r19.23t | ⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23t 2203 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓))) | |
2 | df-ral 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
3 | impexp 451 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
4 | 3 | albii 1822 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) |
5 | 2, 4 | bitr4i 277 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) |
6 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 6 | imbi1i 350 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) |
8 | 1, 5, 7 | 3bitr4g 314 | 1 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-ral 3069 df-rex 3070 |
This theorem is referenced by: r19.23 3247 rexlimd2 3249 riotasv3d 36974 |
Copyright terms: Public domain | W3C validator |