Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmoanimALT | Structured version Visualization version GIF version |
Description: Alternate proof of rmoanim 3823, shorter but requiring ax-10 2139 and ax-11 2156. (Contributed by Alexander van der Vekens, 25-Jun-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rmoanim.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
rmoanimALT | ⊢ (∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 450 | . . . . 5 ⊢ (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → (𝜓 → 𝑥 = 𝑦))) | |
2 | 1 | ralbii 3090 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜓 → 𝑥 = 𝑦))) |
3 | rmoanim.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
4 | 3 | r19.21 3138 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → (𝜓 → 𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
5 | 2, 4 | bitri 274 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
6 | 5 | exbii 1851 | . 2 ⊢ (∃𝑦∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∃𝑦(𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
7 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦(𝜑 ∧ 𝜓) | |
8 | 7 | rmo2 3816 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
9 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
10 | 9 | rmo2 3816 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) |
11 | 10 | imbi2i 335 | . . 3 ⊢ ((𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) ↔ (𝜑 → ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
12 | 19.37v 1996 | . . 3 ⊢ (∃𝑦(𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) ↔ (𝜑 → ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | |
13 | 11, 12 | bitr4i 277 | . 2 ⊢ ((𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) ↔ ∃𝑦(𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
14 | 6, 8, 13 | 3bitr4i 302 | 1 ⊢ (∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 Ⅎwnf 1787 ∀wral 3063 ∃*wrmo 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 df-ral 3068 df-rmo 3071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |