| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmoanimALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of rmoanim 3845, shorter but requiring ax-10 2144 and ax-11 2160. (Contributed by Alexander van der Vekens, 25-Jun-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rmoanim.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| rmoanimALT | ⊢ (∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 450 | . . . . 5 ⊢ (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → (𝜓 → 𝑥 = 𝑦))) | |
| 2 | 1 | ralbii 3078 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜓 → 𝑥 = 𝑦))) |
| 3 | rmoanim.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 3 | r19.21 3227 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → (𝜓 → 𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 5 | 2, 4 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 6 | 5 | exbii 1849 | . 2 ⊢ (∃𝑦∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∃𝑦(𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 7 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦(𝜑 ∧ 𝜓) | |
| 8 | 7 | rmo2 3838 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 9 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 10 | 9 | rmo2 3838 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) |
| 11 | 10 | imbi2i 336 | . . 3 ⊢ ((𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) ↔ (𝜑 → ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 12 | 19.37v 1998 | . . 3 ⊢ (∃𝑦(𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) ↔ (𝜑 → ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | |
| 13 | 11, 12 | bitr4i 278 | . 2 ⊢ ((𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) ↔ ∃𝑦(𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 14 | 6, 8, 13 | 3bitr4i 303 | 1 ⊢ (∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 Ⅎwnf 1784 ∀wral 3047 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-ral 3048 df-rmo 3346 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |