Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r19.32 Structured version   Visualization version   GIF version

Theorem r19.32 42703
Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, analogous to r19.32v 3281. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Hypothesis
Ref Expression
r19.32.1 𝑥𝜑
Assertion
Ref Expression
r19.32 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓))

Proof of Theorem r19.32
StepHypRef Expression
1 r19.32.1 . . . 4 𝑥𝜑
21nfn 1819 . . 3 𝑥 ¬ 𝜑
32r19.21 3165 . 2 (∀𝑥𝐴𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝐴 𝜓))
4 df-or 834 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
54ralbii 3115 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜑𝜓))
6 df-or 834 . 2 ((𝜑 ∨ ∀𝑥𝐴 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝐴 𝜓))
73, 5, 63bitr4i 295 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wo 833  wnf 1746  wral 3088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-12 2106
This theorem depends on definitions:  df-bi 199  df-or 834  df-ex 1743  df-nf 1747  df-ral 3093
This theorem is referenced by:  2reu3  42716
  Copyright terms: Public domain W3C validator