Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmoanim Structured version   Visualization version   GIF version

Theorem rmoanim 41956
Description: Introduction of a conjunct into restricted "at most one" quantifier, analogous to moanim 2684. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
Hypothesis
Ref Expression
rmoanim.1 𝑥𝜑
Assertion
Ref Expression
rmoanim (∃*𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝐴 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rmoanim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 impexp 442 . . . . 5 (((𝜑𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → (𝜓𝑥 = 𝑦)))
21ralbii 3161 . . . 4 (∀𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜑 → (𝜓𝑥 = 𝑦)))
3 rmoanim.1 . . . . 5 𝑥𝜑
43r19.21 3137 . . . 4 (∀𝑥𝐴 (𝜑 → (𝜓𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
52, 4bitri 267 . . 3 (∀𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
65exbii 1944 . 2 (∃𝑦𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ ∃𝑦(𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
7 nfv 2010 . . 3 𝑦(𝜑𝜓)
87rmo2 3721 . 2 (∃*𝑥𝐴 (𝜑𝜓) ↔ ∃𝑦𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
9 nfv 2010 . . . . 5 𝑦𝜓
109rmo2 3721 . . . 4 (∃*𝑥𝐴 𝜓 ↔ ∃𝑦𝑥𝐴 (𝜓𝑥 = 𝑦))
1110imbi2i 328 . . 3 ((𝜑 → ∃*𝑥𝐴 𝜓) ↔ (𝜑 → ∃𝑦𝑥𝐴 (𝜓𝑥 = 𝑦)))
12 19.37v 2092 . . 3 (∃𝑦(𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)) ↔ (𝜑 → ∃𝑦𝑥𝐴 (𝜓𝑥 = 𝑦)))
1311, 12bitr4i 270 . 2 ((𝜑 → ∃*𝑥𝐴 𝜓) ↔ ∃𝑦(𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
146, 8, 133bitr4i 295 1 (∃*𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wex 1875  wnf 1879  wral 3089  ∃*wrmo 3092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-10 2185  ax-11 2200  ax-12 2213
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-mo 2591  df-ral 3094  df-rmo 3097
This theorem is referenced by:  2reu1  41963
  Copyright terms: Public domain W3C validator