MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoanim Structured version   Visualization version   GIF version

Theorem rmoanim 3865
Description: Introduction of a conjunct into restricted "at most one" quantifier, analogous to moanim 2614. (Contributed by Alexander van der Vekens, 25-Jun-2017.) Avoid ax-10 2142 and ax-11 2158. (Revised by GG, 24-Aug-2023.)
Hypothesis
Ref Expression
rmoanim.1 𝑥𝜑
Assertion
Ref Expression
rmoanim (∃*𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝐴 𝜓))

Proof of Theorem rmoanim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 impexp 450 . . . . 5 (((𝜑𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → (𝜓𝑥 = 𝑦)))
21ralbii 3077 . . . 4 (∀𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜑 → (𝜓𝑥 = 𝑦)))
3 rmoanim.1 . . . . 5 𝑥𝜑
43r19.21 3234 . . . 4 (∀𝑥𝐴 (𝜑 → (𝜓𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
52, 4bitri 275 . . 3 (∀𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
65exbii 1848 . 2 (∃𝑦𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ ∃𝑦(𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
7 df-rmo 3357 . . 3 (∃*𝑥𝐴 (𝜑𝜓) ↔ ∃*𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
8 df-mo 2534 . . 3 (∃*𝑥(𝑥𝐴 ∧ (𝜑𝜓)) ↔ ∃𝑦𝑥((𝑥𝐴 ∧ (𝜑𝜓)) → 𝑥 = 𝑦))
9 impexp 450 . . . . . 6 (((𝑥𝐴 ∧ (𝜑𝜓)) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)))
109albii 1819 . . . . 5 (∀𝑥((𝑥𝐴 ∧ (𝜑𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)))
11 df-ral 3047 . . . . 5 (∀𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → ((𝜑𝜓) → 𝑥 = 𝑦)))
1210, 11bitr4i 278 . . . 4 (∀𝑥((𝑥𝐴 ∧ (𝜑𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
1312exbii 1848 . . 3 (∃𝑦𝑥((𝑥𝐴 ∧ (𝜑𝜓)) → 𝑥 = 𝑦) ↔ ∃𝑦𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
147, 8, 133bitri 297 . 2 (∃*𝑥𝐴 (𝜑𝜓) ↔ ∃𝑦𝑥𝐴 ((𝜑𝜓) → 𝑥 = 𝑦))
15 df-rmo 3357 . . . . 5 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
16 df-mo 2534 . . . . 5 (∃*𝑥(𝑥𝐴𝜓) ↔ ∃𝑦𝑥((𝑥𝐴𝜓) → 𝑥 = 𝑦))
17 impexp 450 . . . . . . . 8 (((𝑥𝐴𝜓) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝜓𝑥 = 𝑦)))
1817albii 1819 . . . . . . 7 (∀𝑥((𝑥𝐴𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜓𝑥 = 𝑦)))
19 df-ral 3047 . . . . . . 7 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝜓𝑥 = 𝑦)))
2018, 19bitr4i 278 . . . . . 6 (∀𝑥((𝑥𝐴𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))
2120exbii 1848 . . . . 5 (∃𝑦𝑥((𝑥𝐴𝜓) → 𝑥 = 𝑦) ↔ ∃𝑦𝑥𝐴 (𝜓𝑥 = 𝑦))
2215, 16, 213bitri 297 . . . 4 (∃*𝑥𝐴 𝜓 ↔ ∃𝑦𝑥𝐴 (𝜓𝑥 = 𝑦))
2322imbi2i 336 . . 3 ((𝜑 → ∃*𝑥𝐴 𝜓) ↔ (𝜑 → ∃𝑦𝑥𝐴 (𝜓𝑥 = 𝑦)))
24 19.37v 1997 . . 3 (∃𝑦(𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)) ↔ (𝜑 → ∃𝑦𝑥𝐴 (𝜓𝑥 = 𝑦)))
2523, 24bitr4i 278 . 2 ((𝜑 → ∃*𝑥𝐴 𝜓) ↔ ∃𝑦(𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
266, 14, 253bitr4i 303 1 (∃*𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wnf 1783  wcel 2109  ∃*wmo 2532  wral 3046  ∃*wrmo 3356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-mo 2534  df-ral 3047  df-rmo 3357
This theorem is referenced by:  2reu1  3868
  Copyright terms: Public domain W3C validator