| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | impexp 450 | . . . . 5
⊢ (((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → (𝜓 → 𝑥 = 𝑦))) | 
| 2 | 1 | ralbii 3092 | . . . 4
⊢
(∀𝑥 ∈
𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜑 → (𝜓 → 𝑥 = 𝑦))) | 
| 3 |  | rmoanim.1 | . . . . 5
⊢
Ⅎ𝑥𝜑 | 
| 4 | 3 | r19.21 3253 | . . . 4
⊢
(∀𝑥 ∈
𝐴 (𝜑 → (𝜓 → 𝑥 = 𝑦)) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | 
| 5 | 2, 4 | bitri 275 | . . 3
⊢
(∀𝑥 ∈
𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | 
| 6 | 5 | exbii 1847 | . 2
⊢
(∃𝑦∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∃𝑦(𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | 
| 7 |  | df-rmo 3379 | . . 3
⊢
(∃*𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓))) | 
| 8 |  | df-mo 2539 | . . 3
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝑦)) | 
| 9 |  | impexp 450 | . . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) | 
| 10 | 9 | albii 1818 | . . . . 5
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) | 
| 11 |  | df-ral 3061 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) | 
| 12 | 10, 11 | bitr4i 278 | . . . 4
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | 
| 13 | 12 | exbii 1847 | . . 3
⊢
(∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | 
| 14 | 7, 8, 13 | 3bitri 297 | . 2
⊢
(∃*𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦∀𝑥 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | 
| 15 |  | df-rmo 3379 | . . . . 5
⊢
(∃*𝑥 ∈
𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | 
| 16 |  | df-mo 2539 | . . . . 5
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 = 𝑦)) | 
| 17 |  | impexp 450 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → (𝜓 → 𝑥 = 𝑦))) | 
| 18 | 17 | albii 1818 | . . . . . . 7
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜓 → 𝑥 = 𝑦))) | 
| 19 |  | df-ral 3061 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝜓 → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜓 → 𝑥 = 𝑦))) | 
| 20 | 18, 19 | bitr4i 278 | . . . . . 6
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) | 
| 21 | 20 | exbii 1847 | . . . . 5
⊢
(∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) | 
| 22 | 15, 16, 21 | 3bitri 297 | . . . 4
⊢
(∃*𝑥 ∈
𝐴 𝜓 ↔ ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) | 
| 23 | 22 | imbi2i 336 | . . 3
⊢ ((𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) ↔ (𝜑 → ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | 
| 24 |  | 19.37v 1990 | . . 3
⊢
(∃𝑦(𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) ↔ (𝜑 → ∃𝑦∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | 
| 25 | 23, 24 | bitr4i 278 | . 2
⊢ ((𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) ↔ ∃𝑦(𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) | 
| 26 | 6, 14, 25 | 3bitr4i 303 | 1
⊢
(∃*𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓)) |