Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.23 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.23 2204. See r19.23v 3208 for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
r19.23.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
r19.23 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.23.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | r19.23t 3246 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-ral 3069 df-rex 3070 |
This theorem is referenced by: rexlimi 3248 iunssf 4974 ralxp3f 33685 ss2iundf 41267 |
Copyright terms: Public domain | W3C validator |