MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23 Structured version   Visualization version   GIF version

Theorem r19.23 3247
Description: Restricted quantifier version of 19.23 2204. See r19.23v 3208 for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
r19.23.1 𝑥𝜓
Assertion
Ref Expression
r19.23 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))

Proof of Theorem r19.23
StepHypRef Expression
1 r19.23.1 . 2 𝑥𝜓
2 r19.23t 3246 . 2 (Ⅎ𝑥𝜓 → (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
31, 2ax-mp 5 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1786  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-ral 3069  df-rex 3070
This theorem is referenced by:  rexlimi  3248  iunssf  4974  ralxp3f  33685  ss2iundf  41267
  Copyright terms: Public domain W3C validator