Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.23 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.23 2207. See r19.23v 3207 for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
r19.23.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
r19.23 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.23.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | r19.23t 3241 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1787 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rexlimi 3243 iunssf 4970 ralxp3f 33588 ss2iundf 41156 |
Copyright terms: Public domain | W3C validator |