| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimi | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of exlimi 2217. For a version based on fewer axioms see rexlimiv 3134. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
| 3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | r19.23 3239 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: reuan 3871 triun 5244 reusv1 5367 reusv3 5375 iunopeqop 5496 tfinds 7855 fiun 7941 f1iun 7942 frpoins3xpg 8139 frpoins3xp3g 8140 iunfo 10553 iundom2g 10554 fsumcom2 15790 fprodcom2 16000 nosupbnd1 27678 nosupbnd2 27680 noinfbnd1 27693 noinfbnd2 27695 dfon2lem7 35807 finminlem 36336 r19.36vf 45160 allbutfiinf 45447 infxrunb3rnmpt 45455 hoidmvlelem1 46624 2zrngmmgm 48227 |
| Copyright terms: Public domain | W3C validator |