MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimi Structured version   Visualization version   GIF version

Theorem rexlimi 3229
Description: Restricted quantifier version of exlimi 2218. For a version based on fewer axioms see rexlimiv 3123. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
rexlimi.1 𝑥𝜓
rexlimi.2 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexlimi (∃𝑥𝐴 𝜑𝜓)

Proof of Theorem rexlimi
StepHypRef Expression
1 rexlimi.2 . . 3 (𝑥𝐴 → (𝜑𝜓))
21rgen 3046 . 2 𝑥𝐴 (𝜑𝜓)
3 rexlimi.1 . . 3 𝑥𝜓
43r19.23 3226 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
52, 4mpbi 230 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1783  wcel 2109  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045  df-rex 3054
This theorem is referenced by:  reuan  3850  triun  5216  reusv1  5339  reusv3  5347  iunopeqop  5468  tfinds  7800  fiun  7885  f1iun  7886  frpoins3xpg  8080  frpoins3xp3g  8081  iunfo  10452  iundom2g  10453  fsumcom2  15699  fprodcom2  15909  nosupbnd1  27642  nosupbnd2  27644  noinfbnd1  27657  noinfbnd2  27659  dfon2lem7  35765  finminlem  36294  r19.36vf  45117  allbutfiinf  45403  infxrunb3rnmpt  45411  hoidmvlelem1  46580  2zrngmmgm  48240
  Copyright terms: Public domain W3C validator