MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimi Structured version   Visualization version   GIF version

Theorem rexlimi 3265
Description: Restricted quantifier version of exlimi 2218. For a version based on fewer axioms see rexlimiv 3154. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
rexlimi.1 𝑥𝜓
rexlimi.2 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexlimi (∃𝑥𝐴 𝜑𝜓)

Proof of Theorem rexlimi
StepHypRef Expression
1 rexlimi.2 . . 3 (𝑥𝐴 → (𝜑𝜓))
21rgen 3069 . 2 𝑥𝐴 (𝜑𝜓)
3 rexlimi.1 . . 3 𝑥𝜓
43r19.23 3262 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
52, 4mpbi 230 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1781  wcel 2108  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-ral 3068  df-rex 3077
This theorem is referenced by:  reuan  3918  triun  5298  reusv1  5415  reusv3  5423  iunopeqop  5540  tfinds  7897  fiun  7983  f1iun  7984  frpoins3xpg  8181  frpoins3xp3g  8182  iunfo  10608  iundom2g  10609  fsumcom2  15822  fprodcom2  16032  nosupbnd1  27777  nosupbnd2  27779  noinfbnd1  27792  noinfbnd2  27794  dfon2lem7  35753  finminlem  36284  r19.36vf  45038  allbutfiinf  45335  infxrunb3rnmpt  45343  hoidmvlelem1  46516  2zrngmmgm  47975
  Copyright terms: Public domain W3C validator