Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimi | Structured version Visualization version GIF version |
Description: Restricted quantifier version of exlimi 2215. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | rgen 3080 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | r19.23 3238 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
5 | 2, 4 | mpbi 233 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1785 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-nf 1786 df-ral 3075 df-rex 3076 |
This theorem is referenced by: reuan 3804 triun 5155 reusv1 5270 reusv3 5278 iunopeqop 5384 tfinds 7579 fiun 7654 f1iun 7655 iunfo 10012 iundom2g 10013 fsumcom2 15190 fprodcom2 15399 dfon2lem7 33293 frpoins3xpg 33344 frpoins3xp3g 33345 nosupbnd1 33514 nosupbnd2 33516 noinfbnd1 33529 noinfbnd2 33531 finminlem 34090 r19.36vf 42179 allbutfiinf 42458 infxrunb3rnmpt 42466 hoidmvlelem1 43635 2zrngmmgm 44986 |
Copyright terms: Public domain | W3C validator |