![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimi | Structured version Visualization version GIF version |
Description: Restricted quantifier version of exlimi 2214. For a version based on fewer axioms see rexlimiv 3145. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | rgen 3060 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | r19.23 3253 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
5 | 2, 4 | mpbi 230 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1779 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-nf 1780 df-ral 3059 df-rex 3068 |
This theorem is referenced by: reuan 3904 triun 5279 reusv1 5402 reusv3 5410 iunopeqop 5530 tfinds 7880 fiun 7965 f1iun 7966 frpoins3xpg 8163 frpoins3xp3g 8164 iunfo 10576 iundom2g 10577 fsumcom2 15806 fprodcom2 16016 nosupbnd1 27773 nosupbnd2 27775 noinfbnd1 27788 noinfbnd2 27790 dfon2lem7 35770 finminlem 36300 r19.36vf 45075 allbutfiinf 45369 infxrunb3rnmpt 45377 hoidmvlelem1 46550 2zrngmmgm 48095 |
Copyright terms: Public domain | W3C validator |