Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimi | Structured version Visualization version GIF version |
Description: Restricted quantifier version of exlimi 2213. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | r19.23 3242 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
5 | 2, 4 | mpbi 229 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-ral 3068 df-rex 3069 |
This theorem is referenced by: reuan 3825 triun 5200 reusv1 5315 reusv3 5323 iunopeqop 5429 tfinds 7681 fiun 7759 f1iun 7760 iunfo 10226 iundom2g 10227 fsumcom2 15414 fprodcom2 15622 dfon2lem7 33671 frpoins3xpg 33714 frpoins3xp3g 33715 nosupbnd1 33844 nosupbnd2 33846 noinfbnd1 33859 noinfbnd2 33861 finminlem 34434 r19.36vf 42574 allbutfiinf 42850 infxrunb3rnmpt 42858 hoidmvlelem1 44023 2zrngmmgm 45392 |
Copyright terms: Public domain | W3C validator |