MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimi Structured version   Visualization version   GIF version

Theorem rexlimi 3243
Description: Restricted quantifier version of exlimi 2213. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
rexlimi.1 𝑥𝜓
rexlimi.2 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexlimi (∃𝑥𝐴 𝜑𝜓)

Proof of Theorem rexlimi
StepHypRef Expression
1 rexlimi.2 . . 3 (𝑥𝐴 → (𝜑𝜓))
21rgen 3073 . 2 𝑥𝐴 (𝜑𝜓)
3 rexlimi.1 . . 3 𝑥𝜓
43r19.23 3242 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
52, 4mpbi 229 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1787  wcel 2108  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-ral 3068  df-rex 3069
This theorem is referenced by:  reuan  3825  triun  5200  reusv1  5315  reusv3  5323  iunopeqop  5429  tfinds  7681  fiun  7759  f1iun  7760  iunfo  10226  iundom2g  10227  fsumcom2  15414  fprodcom2  15622  dfon2lem7  33671  frpoins3xpg  33714  frpoins3xp3g  33715  nosupbnd1  33844  nosupbnd2  33846  noinfbnd1  33859  noinfbnd2  33861  finminlem  34434  r19.36vf  42574  allbutfiinf  42850  infxrunb3rnmpt  42858  hoidmvlelem1  44023  2zrngmmgm  45392
  Copyright terms: Public domain W3C validator