| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimi | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of exlimi 2220. For a version based on fewer axioms see rexlimiv 3126. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
| 3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | r19.23 3229 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: reuan 3847 triun 5212 reusv1 5335 reusv3 5343 iunopeqop 5461 tfinds 7790 fiun 7875 f1iun 7876 frpoins3xpg 8070 frpoins3xp3g 8071 iunfo 10430 iundom2g 10431 fsumcom2 15681 fprodcom2 15891 nosupbnd1 27654 nosupbnd2 27656 noinfbnd1 27669 noinfbnd2 27671 dfon2lem7 35829 finminlem 36358 r19.36vf 45179 allbutfiinf 45464 infxrunb3rnmpt 45472 hoidmvlelem1 46639 2zrngmmgm 48289 |
| Copyright terms: Public domain | W3C validator |