MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimi Structured version   Visualization version   GIF version

Theorem rexlimi 3242
Description: Restricted quantifier version of exlimi 2217. For a version based on fewer axioms see rexlimiv 3134. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
rexlimi.1 𝑥𝜓
rexlimi.2 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexlimi (∃𝑥𝐴 𝜑𝜓)

Proof of Theorem rexlimi
StepHypRef Expression
1 rexlimi.2 . . 3 (𝑥𝐴 → (𝜑𝜓))
21rgen 3053 . 2 𝑥𝐴 (𝜑𝜓)
3 rexlimi.1 . . 3 𝑥𝜓
43r19.23 3239 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
52, 4mpbi 230 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1783  wcel 2108  wral 3051  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3052  df-rex 3061
This theorem is referenced by:  reuan  3871  triun  5244  reusv1  5367  reusv3  5375  iunopeqop  5496  tfinds  7855  fiun  7941  f1iun  7942  frpoins3xpg  8139  frpoins3xp3g  8140  iunfo  10553  iundom2g  10554  fsumcom2  15790  fprodcom2  16000  nosupbnd1  27678  nosupbnd2  27680  noinfbnd1  27693  noinfbnd2  27695  dfon2lem7  35807  finminlem  36336  r19.36vf  45160  allbutfiinf  45447  infxrunb3rnmpt  45455  hoidmvlelem1  46624  2zrngmmgm  48227
  Copyright terms: Public domain W3C validator