| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimi | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of exlimi 2222. For a version based on fewer axioms see rexlimiv 3127. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | rgen 3050 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
| 3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | r19.23 3230 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3049 df-rex 3058 |
| This theorem is referenced by: reuan 3843 triun 5214 reusv1 5337 reusv3 5345 iunopeqop 5464 tfinds 7796 fiun 7881 f1iun 7882 frpoins3xpg 8076 frpoins3xp3g 8077 iunfo 10437 iundom2g 10438 fsumcom2 15683 fprodcom2 15893 nosupbnd1 27654 nosupbnd2 27656 noinfbnd1 27669 noinfbnd2 27671 dfon2lem7 35852 finminlem 36383 r19.36vf 45258 allbutfiinf 45543 infxrunb3rnmpt 45551 hoidmvlelem1 46718 2zrngmmgm 48377 |
| Copyright terms: Public domain | W3C validator |