| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimi | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of exlimi 2218. For a version based on fewer axioms see rexlimiv 3127. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
| rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
| 3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | r19.23 3234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
| 5 | 2, 4 | mpbi 230 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: reuan 3859 triun 5229 reusv1 5352 reusv3 5360 iunopeqop 5481 tfinds 7836 fiun 7921 f1iun 7922 frpoins3xpg 8119 frpoins3xp3g 8120 iunfo 10492 iundom2g 10493 fsumcom2 15740 fprodcom2 15950 nosupbnd1 27626 nosupbnd2 27628 noinfbnd1 27641 noinfbnd2 27643 dfon2lem7 35777 finminlem 36306 r19.36vf 45130 allbutfiinf 45416 infxrunb3rnmpt 45424 hoidmvlelem1 46593 2zrngmmgm 48240 |
| Copyright terms: Public domain | W3C validator |