![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimi | Structured version Visualization version GIF version |
Description: Restricted quantifier version of exlimi 2218. For a version based on fewer axioms see rexlimiv 3154. (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rexlimi.1 | ⊢ Ⅎ𝑥𝜓 |
rexlimi.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
rexlimi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimi.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | rgen 3069 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
3 | rexlimi.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | r19.23 3262 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓)) |
5 | 2, 4 | mpbi 230 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-ral 3068 df-rex 3077 |
This theorem is referenced by: reuan 3918 triun 5298 reusv1 5415 reusv3 5423 iunopeqop 5540 tfinds 7897 fiun 7983 f1iun 7984 frpoins3xpg 8181 frpoins3xp3g 8182 iunfo 10608 iundom2g 10609 fsumcom2 15822 fprodcom2 16032 nosupbnd1 27777 nosupbnd2 27779 noinfbnd1 27792 noinfbnd2 27794 dfon2lem7 35753 finminlem 36284 r19.36vf 45038 allbutfiinf 45335 infxrunb3rnmpt 45343 hoidmvlelem1 46516 2zrngmmgm 47975 |
Copyright terms: Public domain | W3C validator |