MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxp3f Structured version   Visualization version   GIF version

Theorem ralxp3f 8142
Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
ralxp3f.1 𝑦𝜑
ralxp3f.2 𝑧𝜑
ralxp3f.3 𝑤𝜑
ralxp3f.4 𝑥𝜓
ralxp3f.5 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp3f (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem ralxp3f
StepHypRef Expression
1 df-ral 3059 . 2 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑥(𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑))
2 el2xptp 8039 . . . . 5 (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ↔ ∃𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩)
32imbi1i 349 . . . 4 ((𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑) ↔ (∃𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
4 ralxp3f.3 . . . . . . . . 9 𝑤𝜑
54r19.23 3250 . . . . . . . 8 (∀𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ (∃𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
65ralbii 3090 . . . . . . 7 (∀𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑧𝐵 (∃𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
7 ralxp3f.2 . . . . . . . 8 𝑧𝜑
87r19.23 3250 . . . . . . 7 (∀𝑧𝐵 (∃𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ (∃𝑧𝐵𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
96, 8bitri 275 . . . . . 6 (∀𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ (∃𝑧𝐵𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
109ralbii 3090 . . . . 5 (∀𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑦𝐴 (∃𝑧𝐵𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
11 ralxp3f.1 . . . . . 6 𝑦𝜑
1211r19.23 3250 . . . . 5 (∀𝑦𝐴 (∃𝑧𝐵𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ (∃𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
1310, 12bitr2i 276 . . . 4 ((∃𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
143, 13bitri 275 . . 3 ((𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑) ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
1514albii 1814 . 2 (∀𝑥(𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑) ↔ ∀𝑥𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
16 ralcom4 3280 . . 3 (∀𝑦𝐴𝑥𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑥𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
17 ralcom4 3280 . . . . 5 (∀𝑧𝐵𝑥𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑥𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
18 ralcom4 3280 . . . . . . 7 (∀𝑤𝐶𝑥(𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑥𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑))
19 ralxp3f.4 . . . . . . . . 9 𝑥𝜓
20 otex 5467 . . . . . . . . 9 𝑦, 𝑧, 𝑤⟩ ∈ V
21 ralxp3f.5 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → (𝜑𝜓))
2219, 20, 21ceqsal 3507 . . . . . . . 8 (∀𝑥(𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ 𝜓)
2322ralbii 3090 . . . . . . 7 (∀𝑤𝐶𝑥(𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑤𝐶 𝜓)
2418, 23bitr3i 277 . . . . . 6 (∀𝑥𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑤𝐶 𝜓)
2524ralbii 3090 . . . . 5 (∀𝑧𝐵𝑥𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑧𝐵𝑤𝐶 𝜓)
2617, 25bitr3i 277 . . . 4 (∀𝑥𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑧𝐵𝑤𝐶 𝜓)
2726ralbii 3090 . . 3 (∀𝑦𝐴𝑥𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
2816, 27bitr3i 277 . 2 (∀𝑥𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨𝑦, 𝑧, 𝑤⟩ → 𝜑) ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
291, 15, 283bitri 297 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532   = wceq 1534  wnf 1778  wcel 2099  wral 3058  wrex 3067  cotp 4637   × cxp 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-iun 4998  df-opab 5211  df-xp 5684  df-rel 5685
This theorem is referenced by:  ralxp3  8143  ralxp3es  8144  frpoins3xp3g  8146
  Copyright terms: Public domain W3C validator