Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralxp3f Structured version   Visualization version   GIF version

Theorem ralxp3f 33713
Description: Restricted for all over a triple cross product. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
ral3xpf.1 𝑦𝜑
ral3xpf.2 𝑧𝜑
ral3xpf.3 𝑤𝜑
ral3xpf.4 𝑥𝜓
ral3xpf.5 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → (𝜑𝜓))
Assertion
Ref Expression
ralxp3f (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem ralxp3f
StepHypRef Expression
1 df-ral 3060 . 2 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑥(𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑))
2 ral3xpf.1 . . . . 5 𝑦𝜑
32r19.23 3275 . . . 4 (∀𝑦𝐴 (∃𝑧𝐵𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ (∃𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
4 ral3xpf.3 . . . . . . . 8 𝑤𝜑
54r19.23 3275 . . . . . . 7 (∀𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ (∃𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
65ralbii 3090 . . . . . 6 (∀𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑧𝐵 (∃𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
7 ral3xpf.2 . . . . . . 7 𝑧𝜑
87r19.23 3275 . . . . . 6 (∀𝑧𝐵 (∃𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ (∃𝑧𝐵𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
96, 8bitri 274 . . . . 5 (∀𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ (∃𝑧𝐵𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
109ralbii 3090 . . . 4 (∀𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑦𝐴 (∃𝑧𝐵𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
11 elxpxp 33711 . . . . 5 (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ↔ ∃𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩)
1211imbi1i 349 . . . 4 ((𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑) ↔ (∃𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
133, 10, 123bitr4ri 303 . . 3 ((𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑) ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
1413albii 1817 . 2 (∀𝑥(𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑) ↔ ∀𝑥𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
15 ralcom4 3258 . . 3 (∀𝑦𝐴𝑥𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑥𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
16 ralcom4 3258 . . . . 5 (∀𝑧𝐵𝑥𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑥𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
17 ralcom4 3258 . . . . . . 7 (∀𝑤𝐶𝑥(𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑥𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑))
18 ral3xpf.4 . . . . . . . . 9 𝑥𝜓
19 opex 5382 . . . . . . . . 9 ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ ∈ V
20 ral3xpf.5 . . . . . . . . 9 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → (𝜑𝜓))
2118, 19, 20ceqsal 3468 . . . . . . . 8 (∀𝑥(𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ 𝜓)
2221ralbii 3090 . . . . . . 7 (∀𝑤𝐶𝑥(𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑤𝐶 𝜓)
2317, 22bitr3i 276 . . . . . 6 (∀𝑥𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑤𝐶 𝜓)
2423ralbii 3090 . . . . 5 (∀𝑧𝐵𝑥𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑧𝐵𝑤𝐶 𝜓)
2516, 24bitr3i 276 . . . 4 (∀𝑥𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑧𝐵𝑤𝐶 𝜓)
2625ralbii 3090 . . 3 (∀𝑦𝐴𝑥𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
2715, 26bitr3i 276 . 2 (∀𝑥𝑦𝐴𝑧𝐵𝑤𝐶 (𝑥 = ⟨⟨𝑦, 𝑧⟩, 𝑤⟩ → 𝜑) ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
281, 14, 273bitri 296 1 (∀𝑥 ∈ ((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦𝐴𝑧𝐵𝑤𝐶 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1535   = wceq 1537  wnf 1781  wcel 2101  wral 3059  wrex 3068  cop 4570   × cxp 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-iun 4929  df-opab 5140  df-xp 5597  df-rel 5598
This theorem is referenced by:  ralxp3  33714  ralxp3es  33716  frpoins3xp3g  33816
  Copyright terms: Public domain W3C validator