Proof of Theorem ralxp3f
Step | Hyp | Ref
| Expression |
1 | | df-ral 3068 |
. 2
⊢
(∀𝑥 ∈
((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑥(𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑)) |
2 | | ral3xpf.1 |
. . . . 5
⊢
Ⅎ𝑦𝜑 |
3 | 2 | r19.23 3242 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 (∃𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
4 | | ral3xpf.3 |
. . . . . . . 8
⊢
Ⅎ𝑤𝜑 |
5 | 4 | r19.23 3242 |
. . . . . . 7
⊢
(∀𝑤 ∈
𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ (∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
6 | 5 | ralbii 3090 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑧 ∈ 𝐵 (∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
7 | | ral3xpf.2 |
. . . . . . 7
⊢
Ⅎ𝑧𝜑 |
8 | 7 | r19.23 3242 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐵 (∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ (∃𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
9 | 6, 8 | bitri 274 |
. . . . 5
⊢
(∀𝑧 ∈
𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ (∃𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
10 | 9 | ralbii 3090 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑦 ∈ 𝐴 (∃𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
11 | | elxpxp 33586 |
. . . . 5
⊢ (𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉) |
12 | 11 | imbi1i 349 |
. . . 4
⊢ ((𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑) ↔ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐶 𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
13 | 3, 10, 12 | 3bitr4ri 303 |
. . 3
⊢ ((𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
14 | 13 | albii 1823 |
. 2
⊢
(∀𝑥(𝑥 ∈ ((𝐴 × 𝐵) × 𝐶) → 𝜑) ↔ ∀𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
15 | | ralcom4 3161 |
. . 3
⊢
(∀𝑦 ∈
𝐴 ∀𝑥∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
16 | | ralcom4 3161 |
. . . . 5
⊢
(∀𝑧 ∈
𝐵 ∀𝑥∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑥∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
17 | | ralcom4 3161 |
. . . . . . 7
⊢
(∀𝑤 ∈
𝐶 ∀𝑥(𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑥∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑)) |
18 | | ral3xpf.4 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝜓 |
19 | | opex 5373 |
. . . . . . . . 9
⊢
〈〈𝑦, 𝑧〉, 𝑤〉 ∈ V |
20 | | ral3xpf.5 |
. . . . . . . . 9
⊢ (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → (𝜑 ↔ 𝜓)) |
21 | 18, 19, 20 | ceqsal 3456 |
. . . . . . . 8
⊢
(∀𝑥(𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ 𝜓) |
22 | 21 | ralbii 3090 |
. . . . . . 7
⊢
(∀𝑤 ∈
𝐶 ∀𝑥(𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑤 ∈ 𝐶 𝜓) |
23 | 17, 22 | bitr3i 276 |
. . . . . 6
⊢
(∀𝑥∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑤 ∈ 𝐶 𝜓) |
24 | 23 | ralbii 3090 |
. . . . 5
⊢
(∀𝑧 ∈
𝐵 ∀𝑥∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
25 | 16, 24 | bitr3i 276 |
. . . 4
⊢
(∀𝑥∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
26 | 25 | ralbii 3090 |
. . 3
⊢
(∀𝑦 ∈
𝐴 ∀𝑥∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
27 | 15, 26 | bitr3i 276 |
. 2
⊢
(∀𝑥∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 (𝑥 = 〈〈𝑦, 𝑧〉, 𝑤〉 → 𝜑) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |
28 | 1, 14, 27 | 3bitri 296 |
1
⊢
(∀𝑥 ∈
((𝐴 × 𝐵) × 𝐶)𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐶 𝜓) |