MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunssf Structured version   Visualization version   GIF version

Theorem iunssf 4970
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
iunssf.1 𝑥𝐶
Assertion
Ref Expression
iunssf ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)

Proof of Theorem iunssf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4923 . . 3 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
21sseq1i 3945 . 2 ( 𝑥𝐴 𝐵𝐶 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ 𝐶)
3 abss 3990 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ 𝐶 ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦𝐶))
4 dfss2 3903 . . . 4 (𝐵𝐶 ↔ ∀𝑦(𝑦𝐵𝑦𝐶))
54ralbii 3090 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝑦𝐶))
6 ralcom4 3161 . . 3 (∀𝑥𝐴𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵𝑦𝐶))
7 iunssf.1 . . . . . 6 𝑥𝐶
87nfcri 2893 . . . . 5 𝑥 𝑦𝐶
98r19.23 3242 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (∃𝑥𝐴 𝑦𝐵𝑦𝐶))
109albii 1823 . . 3 (∀𝑦𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦𝐶))
115, 6, 103bitrri 297 . 2 (∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦𝐶) ↔ ∀𝑥𝐴 𝐵𝐶)
122, 3, 113bitri 296 1 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  {cab 2715  wnfc 2886  wral 3063  wrex 3064  wss 3883   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-iun 4923
This theorem is referenced by:  djussxp2  30886  iunmapss  42644
  Copyright terms: Public domain W3C validator