Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunssf | Structured version Visualization version GIF version |
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
iunssf.1 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
iunssf | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4926 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | 1 | sseq1i 3949 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ 𝐶) |
3 | abss 3994 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ⊆ 𝐶 ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
4 | dfss2 3907 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
5 | 4 | ralbii 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
6 | ralcom4 3164 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
7 | iunssf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
8 | 7 | nfcri 2894 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐶 |
9 | 8 | r19.23 3247 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
10 | 9 | albii 1822 | . . 3 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
11 | 5, 6, 10 | 3bitrri 298 | . 2 ⊢ (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
12 | 2, 3, 11 | 3bitri 297 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-iun 4926 |
This theorem is referenced by: djussxp2 30985 iunmapss 42755 |
Copyright terms: Public domain | W3C validator |