MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunssf Structured version   Visualization version   GIF version

Theorem iunssf 5067
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
iunssf.1 𝑥𝐶
Assertion
Ref Expression
iunssf ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)

Proof of Theorem iunssf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 5017 . . 3 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
21sseq1i 4037 . 2 ( 𝑥𝐴 𝐵𝐶 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ 𝐶)
3 abss 4086 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ⊆ 𝐶 ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦𝐶))
4 df-ss 3993 . . . 4 (𝐵𝐶 ↔ ∀𝑦(𝑦𝐵𝑦𝐶))
54ralbii 3099 . . 3 (∀𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝑦𝐶))
6 ralcom4 3292 . . 3 (∀𝑥𝐴𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦𝑥𝐴 (𝑦𝐵𝑦𝐶))
7 iunssf.1 . . . . . 6 𝑥𝐶
87nfcri 2900 . . . . 5 𝑥 𝑦𝐶
98r19.23 3262 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (∃𝑥𝐴 𝑦𝐵𝑦𝐶))
109albii 1817 . . 3 (∀𝑦𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ ∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦𝐶))
115, 6, 103bitrri 298 . 2 (∀𝑦(∃𝑥𝐴 𝑦𝐵𝑦𝐶) ↔ ∀𝑥𝐴 𝐵𝐶)
122, 3, 113bitri 297 1 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  {cab 2717  wnfc 2893  wral 3067  wrex 3076  wss 3976   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-ss 3993  df-iun 5017
This theorem is referenced by:  djussxp2  32666  ss2iundf  43621  iunssdf  45061  iunmapss  45122
  Copyright terms: Public domain W3C validator