MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx1stc Structured version   Visualization version   GIF version

Theorem tx1stc 23593
Description: The topological product of two first-countable spaces is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
tx1stc ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → (𝑅 ×t 𝑆) ∈ 1stω)

Proof of Theorem tx1stc
Dummy variables 𝑎 𝑏 𝑚 𝑛 𝑝 𝑞 𝑟 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 23386 . . 3 (𝑅 ∈ 1stω → 𝑅 ∈ Top)
2 1stctop 23386 . . 3 (𝑆 ∈ 1stω → 𝑆 ∈ Top)
3 txtop 23512 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 596 . 2 ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → (𝑅 ×t 𝑆) ∈ Top)
5 eqid 2736 . . . . . . . 8 𝑅 = 𝑅
651stcclb 23387 . . . . . . 7 ((𝑅 ∈ 1stω ∧ 𝑢 𝑅) → ∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))))
76ad2ant2r 747 . . . . . 6 (((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) → ∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))))
8 eqid 2736 . . . . . . . 8 𝑆 = 𝑆
981stcclb 23387 . . . . . . 7 ((𝑆 ∈ 1stω ∧ 𝑣 𝑆) → ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))
109ad2ant2l 746 . . . . . 6 (((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) → ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))
11 reeanv 3217 . . . . . . 7 (∃𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) ↔ (∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))))
12 an4 656 . . . . . . . . 9 (((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) ↔ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))))
13 txopn 23545 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑚𝑅𝑛𝑆)) → (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
1413ralrimivva 3188 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
151, 2, 14syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → ∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
1615adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) → ∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
17 elpwi 4587 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ 𝒫 𝑅𝑎𝑅)
18 ssralv 4032 . . . . . . . . . . . . . . . . . 18 (𝑎𝑅 → (∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
1917, 18syl 17 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ 𝒫 𝑅 → (∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
20 elpwi 4587 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ 𝒫 𝑆𝑏𝑆)
21 ssralv 4032 . . . . . . . . . . . . . . . . . . 19 (𝑏𝑆 → (∀𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ 𝒫 𝑆 → (∀𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2322ralimdv 3155 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ 𝒫 𝑆 → (∀𝑚𝑎𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2419, 23sylan9 507 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆) → (∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2516, 24mpan9 506 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → ∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
26 eqid 2736 . . . . . . . . . . . . . . . 16 (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) = (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))
2726fmpo 8072 . . . . . . . . . . . . . . 15 (∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) ↔ (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆))
2825, 27sylib 218 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆))
2928frnd 6719 . . . . . . . . . . . . 13 ((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆))
30 ovex 7443 . . . . . . . . . . . . . 14 (𝑅 ×t 𝑆) ∈ V
3130elpw2 5309 . . . . . . . . . . . . 13 (ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆) ↔ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆))
3229, 31sylibr 234 . . . . . . . . . . . 12 ((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆))
3332adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆))
34 omelon 9665 . . . . . . . . . . . . . . 15 ω ∈ On
35 xpct 10035 . . . . . . . . . . . . . . 15 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ≼ ω)
36 ondomen 10056 . . . . . . . . . . . . . . 15 ((ω ∈ On ∧ (𝑎 × 𝑏) ≼ ω) → (𝑎 × 𝑏) ∈ dom card)
3734, 35, 36sylancr 587 . . . . . . . . . . . . . 14 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ∈ dom card)
38 vex 3468 . . . . . . . . . . . . . . . . 17 𝑚 ∈ V
39 vex 3468 . . . . . . . . . . . . . . . . 17 𝑛 ∈ V
4038, 39xpex 7752 . . . . . . . . . . . . . . . 16 (𝑚 × 𝑛) ∈ V
4126, 40fnmpoi 8074 . . . . . . . . . . . . . . 15 (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) Fn (𝑎 × 𝑏)
42 dffn4 6801 . . . . . . . . . . . . . . 15 ((𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) Fn (𝑎 × 𝑏) ↔ (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)))
4341, 42mpbi 230 . . . . . . . . . . . . . 14 (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))
44 fodomnum 10076 . . . . . . . . . . . . . 14 ((𝑎 × 𝑏) ∈ dom card → ((𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏)))
4537, 43, 44mpisyl 21 . . . . . . . . . . . . 13 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏))
46 domtr 9026 . . . . . . . . . . . . 13 ((ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ≼ ω) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)
4745, 35, 46syl2anc 584 . . . . . . . . . . . 12 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)
4847ad2antrl 728 . . . . . . . . . . 11 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)
491, 2anim12i 613 . . . . . . . . . . . . . . 15 ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → (𝑅 ∈ Top ∧ 𝑆 ∈ Top))
5049ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (𝑅 ∈ Top ∧ 𝑆 ∈ Top))
51 eltx 23511 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑧 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
5250, 51syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (𝑧 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
53 eleq1 2823 . . . . . . . . . . . . . . . . 17 (𝑤 = ⟨𝑢, 𝑣⟩ → (𝑤 ∈ (𝑟 × 𝑠) ↔ ⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠)))
5453anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑤 = ⟨𝑢, 𝑣⟩ → ((𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) ↔ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
55542rexbidv 3210 . . . . . . . . . . . . . . 15 (𝑤 = ⟨𝑢, 𝑣⟩ → (∃𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) ↔ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
5655rspccv 3603 . . . . . . . . . . . . . 14 (∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
57 r19.27v 3174 . . . . . . . . . . . . . . . . . 18 ((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) → ∀𝑟𝑅 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))
58 r19.29 3102 . . . . . . . . . . . . . . . . . . 19 ((∀𝑟𝑅 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅 (((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
59 r19.29 3102 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
60 opelxp 5695 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ↔ (𝑢𝑟𝑣𝑠))
61 pm3.35 802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑢𝑟 ∧ (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))
62 pm3.35 802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑣𝑠 ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))
6361, 62anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑢𝑟 ∧ (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑣𝑠 ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
6463an4s 660 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑢𝑟𝑣𝑠) ∧ ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
6560, 64sylanb 581 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
6665anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
6766anasss 466 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
6867an12s 649 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
6968expl 457 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) → (((𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
7069reximdv 3156 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) → (∃𝑠𝑆 ((𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
7159, 70syl5 34 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) → ((∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
7271impl 455 . . . . . . . . . . . . . . . . . . . 20 ((((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
7372reximi 3075 . . . . . . . . . . . . . . . . . . 19 (∃𝑟𝑅 (((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
7458, 73syl 17 . . . . . . . . . . . . . . . . . 18 ((∀𝑟𝑅 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
7557, 74sylan 580 . . . . . . . . . . . . . . . . 17 (((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
76 reeanv 3217 . . . . . . . . . . . . . . . . . . . 20 (∃𝑝𝑎𝑞𝑏 ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ↔ (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
77 simpr1l 1231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → 𝑝𝑎)
78 simpr1r 1232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → 𝑞𝑏)
79 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) = (𝑝 × 𝑞))
80 xpeq1 5673 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 = 𝑝 → (𝑚 × 𝑛) = (𝑝 × 𝑛))
8180eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑝 → ((𝑝 × 𝑞) = (𝑚 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑝 × 𝑛)))
82 xpeq2 5680 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑞 → (𝑝 × 𝑛) = (𝑝 × 𝑞))
8382eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑞 → ((𝑝 × 𝑞) = (𝑝 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑝 × 𝑞)))
8481, 83rspc2ev 3619 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝𝑎𝑞𝑏 ∧ (𝑝 × 𝑞) = (𝑝 × 𝑞)) → ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))
8577, 78, 79, 84syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))
86 vex 3468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑝 ∈ V
87 vex 3468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑞 ∈ V
8886, 87xpex 7752 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 × 𝑞) ∈ V
89 eqeq1 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑝 × 𝑞) → (𝑥 = (𝑚 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑚 × 𝑛)))
90892rexbidv 3210 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑝 × 𝑞) → (∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛) ↔ ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛)))
9188, 90elab 3663 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑝 × 𝑞) ∈ {𝑥 ∣ ∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛)} ↔ ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))
9285, 91sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ∈ {𝑥 ∣ ∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛)})
9326rnmpo 7545 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) = {𝑥 ∣ ∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛)}
9492, 93eleqtrrdi 2846 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)))
95 simpr2 1196 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)))
96 opelxpi 5696 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢𝑝𝑣𝑞) → ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞))
9796ad2ant2r 747 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞))
9895, 97syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞))
99 xpss12 5674 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝𝑟𝑞𝑠) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠))
10099ad2ant2l 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠))
10195, 100syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠))
102 simpr3 1197 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑟 × 𝑠) ⊆ 𝑧)
103101, 102sstrd 3974 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ⊆ 𝑧)
104 eleq2 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑝 × 𝑞) → (⟨𝑢, 𝑣⟩ ∈ 𝑤 ↔ ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞)))
105 sseq1 3989 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑝 × 𝑞) → (𝑤𝑧 ↔ (𝑝 × 𝑞) ⊆ 𝑧))
106104, 105anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑝 × 𝑞) → ((⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧) ↔ (⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞) ∧ (𝑝 × 𝑞) ⊆ 𝑧)))
107106rspcev 3606 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝 × 𝑞) ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞) ∧ (𝑝 × 𝑞) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))
10894, 98, 103, 107syl12anc 836 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))
1091083exp2 1355 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝑝𝑎𝑞𝑏) → (((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
110109rexlimdvv 3201 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → (∃𝑝𝑎𝑞𝑏 ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
11176, 110biimtrrid 243 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
112111impd 410 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → (((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
113112rexlimdvva 3202 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → (∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
11475, 113syl5 34 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → (((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
115114expd 415 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → ((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) → (∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
116115impr 454 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
11756, 116syl9r 78 . . . . . . . . . . . . 13 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
11852, 117sylbid 240 . . . . . . . . . . . 12 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (𝑧 ∈ (𝑅 ×t 𝑆) → (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
119118ralrimiv 3132 . . . . . . . . . . 11 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
120 breq1 5127 . . . . . . . . . . . . 13 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → (𝑦 ≼ ω ↔ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω))
121 rexeq 3305 . . . . . . . . . . . . . . 15 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → (∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧) ↔ ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
122121imbi2d 340 . . . . . . . . . . . . . 14 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → ((⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
123122ralbidv 3164 . . . . . . . . . . . . 13 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → (∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)) ↔ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
124120, 123anbi12d 632 . . . . . . . . . . . 12 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))) ↔ (ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
125124rspcev 3606 . . . . . . . . . . 11 ((ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
12633, 48, 119, 125syl12anc 836 . . . . . . . . . 10 (((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
127126ex 412 . . . . . . . . 9 ((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → (((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
12812, 127biimtrid 242 . . . . . . . 8 ((((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → (((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
129128rexlimdvva 3202 . . . . . . 7 (((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) → (∃𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
13011, 129biimtrrid 243 . . . . . 6 (((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) → ((∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
1317, 10, 130mp2and 699 . . . . 5 (((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) ∧ (𝑢 𝑅𝑣 𝑆)) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
132131ralrimivva 3188 . . . 4 ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → ∀𝑢 𝑅𝑣 𝑆𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
133 eleq1 2823 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝑥𝑧 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝑧))
134 eleq1 2823 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝑥𝑤 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝑤))
135134anbi1d 631 . . . . . . . . . 10 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑤𝑤𝑧) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
136135rexbidv 3165 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
137133, 136imbi12d 344 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
138137ralbidv 3164 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → (∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
139138anbi2d 630 . . . . . 6 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
140139rexbidv 3165 . . . . 5 (𝑥 = ⟨𝑢, 𝑣⟩ → (∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
141140ralxp 5826 . . . 4 (∀𝑥 ∈ ( 𝑅 × 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ∀𝑢 𝑅𝑣 𝑆𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
142132, 141sylibr 234 . . 3 ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → ∀𝑥 ∈ ( 𝑅 × 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1435, 8txuni 23535 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
1441, 2, 143syl2an 596 . . 3 ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
145142, 144raleqtrdv 3311 . 2 ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → ∀𝑥 (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
146 eqid 2736 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
147146is1stc2 23385 . 2 ((𝑅 ×t 𝑆) ∈ 1stω ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑥 (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
1484, 145, 147sylanbrc 583 1 ((𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω) → (𝑅 ×t 𝑆) ∈ 1stω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  wss 3931  𝒫 cpw 4580  cop 4612   cuni 4888   class class class wbr 5124   × cxp 5657  dom cdm 5659  ran crn 5660  Oncon0 6357   Fn wfn 6531  wf 6532  ontowfo 6534  (class class class)co 7410  cmpo 7412  ωcom 7866  cdom 8962  cardccrd 9954  Topctop 22836  1stωc1stc 23380   ×t ctx 23503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-card 9958  df-acn 9961  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-1stc 23382  df-tx 23505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator