Step | Hyp | Ref
| Expression |
1 | | spanun.1 |
. . . . . . 7
⊢ 𝐴 ⊆
ℋ |
2 | | spancl 29417 |
. . . . . . 7
⊢ (𝐴 ⊆ ℋ →
(span‘𝐴) ∈
Sℋ ) |
3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢
(span‘𝐴)
∈ Sℋ |
4 | | spanun.2 |
. . . . . . 7
⊢ 𝐵 ⊆
ℋ |
5 | | spancl 29417 |
. . . . . . 7
⊢ (𝐵 ⊆ ℋ →
(span‘𝐵) ∈
Sℋ ) |
6 | 4, 5 | ax-mp 5 |
. . . . . 6
⊢
(span‘𝐵)
∈ Sℋ |
7 | 3, 6 | shscli 29398 |
. . . . 5
⊢
((span‘𝐴)
+ℋ (span‘𝐵)) ∈
Sℋ |
8 | 7 | shssii 29294 |
. . . 4
⊢
((span‘𝐴)
+ℋ (span‘𝐵)) ⊆ ℋ |
9 | | spanss2 29426 |
. . . . . . 7
⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴)) |
10 | 1, 9 | ax-mp 5 |
. . . . . 6
⊢ 𝐴 ⊆ (span‘𝐴) |
11 | | spanss2 29426 |
. . . . . . 7
⊢ (𝐵 ⊆ ℋ → 𝐵 ⊆ (span‘𝐵)) |
12 | 4, 11 | ax-mp 5 |
. . . . . 6
⊢ 𝐵 ⊆ (span‘𝐵) |
13 | | unss12 4096 |
. . . . . 6
⊢ ((𝐴 ⊆ (span‘𝐴) ∧ 𝐵 ⊆ (span‘𝐵)) → (𝐴 ∪ 𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵))) |
14 | 10, 12, 13 | mp2an 692 |
. . . . 5
⊢ (𝐴 ∪ 𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵)) |
15 | 3, 6 | shunssi 29449 |
. . . . 5
⊢
((span‘𝐴)
∪ (span‘𝐵))
⊆ ((span‘𝐴)
+ℋ (span‘𝐵)) |
16 | 14, 15 | sstri 3910 |
. . . 4
⊢ (𝐴 ∪ 𝐵) ⊆ ((span‘𝐴) +ℋ (span‘𝐵)) |
17 | | spanss 29429 |
. . . 4
⊢
((((span‘𝐴)
+ℋ (span‘𝐵)) ⊆ ℋ ∧ (𝐴 ∪ 𝐵) ⊆ ((span‘𝐴) +ℋ (span‘𝐵))) → (span‘(𝐴 ∪ 𝐵)) ⊆ (span‘((span‘𝐴) +ℋ
(span‘𝐵)))) |
18 | 8, 16, 17 | mp2an 692 |
. . 3
⊢
(span‘(𝐴 ∪
𝐵)) ⊆
(span‘((span‘𝐴)
+ℋ (span‘𝐵))) |
19 | | spanid 29428 |
. . . 4
⊢
(((span‘𝐴)
+ℋ (span‘𝐵)) ∈ Sℋ
→ (span‘((span‘𝐴) +ℋ (span‘𝐵))) = ((span‘𝐴) +ℋ
(span‘𝐵))) |
20 | 7, 19 | ax-mp 5 |
. . 3
⊢
(span‘((span‘𝐴) +ℋ (span‘𝐵))) = ((span‘𝐴) +ℋ
(span‘𝐵)) |
21 | 18, 20 | sseqtri 3937 |
. 2
⊢
(span‘(𝐴 ∪
𝐵)) ⊆
((span‘𝐴)
+ℋ (span‘𝐵)) |
22 | 3, 6 | shseli 29397 |
. . . . 5
⊢ (𝑥 ∈ ((span‘𝐴) +ℋ
(span‘𝐵)) ↔
∃𝑧 ∈
(span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 +ℎ 𝑤)) |
23 | | r2ex 3222 |
. . . . 5
⊢
(∃𝑧 ∈
(span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 +ℎ 𝑤) ↔ ∃𝑧∃𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 +ℎ 𝑤))) |
24 | 22, 23 | bitri 278 |
. . . 4
⊢ (𝑥 ∈ ((span‘𝐴) +ℋ
(span‘𝐵)) ↔
∃𝑧∃𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 +ℎ 𝑤))) |
25 | | vex 3412 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
26 | 25 | elspani 29624 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℋ → (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦 ∈
Sℋ (𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦))) |
27 | 1, 26 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦 ∈
Sℋ (𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦)) |
28 | | vex 3412 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
29 | 28 | elspani 29624 |
. . . . . . . . . 10
⊢ (𝐵 ⊆ ℋ → (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦 ∈
Sℋ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦))) |
30 | 4, 29 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦 ∈
Sℋ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) |
31 | 27, 30 | anbi12i 630 |
. . . . . . . 8
⊢ ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ (∀𝑦 ∈ Sℋ
(𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ Sℋ
(𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦))) |
32 | | r19.26 3092 |
. . . . . . . 8
⊢
(∀𝑦 ∈
Sℋ ((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) ↔ (∀𝑦 ∈ Sℋ
(𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ Sℋ
(𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦))) |
33 | 31, 32 | bitr4i 281 |
. . . . . . 7
⊢ ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ ∀𝑦 ∈ Sℋ
((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦))) |
34 | | r19.27v 3107 |
. . . . . . 7
⊢
((∀𝑦 ∈
Sℋ ((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) ∧ 𝑥 = (𝑧 +ℎ 𝑤)) → ∀𝑦 ∈ Sℋ
(((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) ∧ 𝑥 = (𝑧 +ℎ 𝑤))) |
35 | 33, 34 | sylanb 584 |
. . . . . 6
⊢ (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 +ℎ 𝑤)) → ∀𝑦 ∈ Sℋ
(((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) ∧ 𝑥 = (𝑧 +ℎ 𝑤))) |
36 | | unss 4098 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ 𝑦 ∧ 𝐵 ⊆ 𝑦) ↔ (𝐴 ∪ 𝐵) ⊆ 𝑦) |
37 | | anim12 809 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) → ((𝐴 ⊆ 𝑦 ∧ 𝐵 ⊆ 𝑦) → (𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦))) |
38 | 36, 37 | syl5bir 246 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) → ((𝐴 ∪ 𝐵) ⊆ 𝑦 → (𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦))) |
39 | | shaddcl 29298 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈
Sℋ ∧ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦) → (𝑧 +ℎ 𝑤) ∈ 𝑦) |
40 | 39 | 3expib 1124 |
. . . . . . . . . . 11
⊢ (𝑦 ∈
Sℋ → ((𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦) → (𝑧 +ℎ 𝑤) ∈ 𝑦)) |
41 | 38, 40 | sylan9r 512 |
. . . . . . . . . 10
⊢ ((𝑦 ∈
Sℋ ∧ ((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦))) → ((𝐴 ∪ 𝐵) ⊆ 𝑦 → (𝑧 +ℎ 𝑤) ∈ 𝑦)) |
42 | | eleq1 2825 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑧 +ℎ 𝑤) → (𝑥 ∈ 𝑦 ↔ (𝑧 +ℎ 𝑤) ∈ 𝑦)) |
43 | 42 | biimprd 251 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑧 +ℎ 𝑤) → ((𝑧 +ℎ 𝑤) ∈ 𝑦 → 𝑥 ∈ 𝑦)) |
44 | 41, 43 | sylan9 511 |
. . . . . . . . 9
⊢ (((𝑦 ∈
Sℋ ∧ ((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦))) ∧ 𝑥 = (𝑧 +ℎ 𝑤)) → ((𝐴 ∪ 𝐵) ⊆ 𝑦 → 𝑥 ∈ 𝑦)) |
45 | 44 | expl 461 |
. . . . . . . 8
⊢ (𝑦 ∈
Sℋ → ((((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) ∧ 𝑥 = (𝑧 +ℎ 𝑤)) → ((𝐴 ∪ 𝐵) ⊆ 𝑦 → 𝑥 ∈ 𝑦))) |
46 | 45 | ralimia 3081 |
. . . . . . 7
⊢
(∀𝑦 ∈
Sℋ (((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) ∧ 𝑥 = (𝑧 +ℎ 𝑤)) → ∀𝑦 ∈ Sℋ
((𝐴 ∪ 𝐵) ⊆ 𝑦 → 𝑥 ∈ 𝑦)) |
47 | 1, 4 | unssi 4099 |
. . . . . . . 8
⊢ (𝐴 ∪ 𝐵) ⊆ ℋ |
48 | | vex 3412 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
49 | 48 | elspani 29624 |
. . . . . . . 8
⊢ ((𝐴 ∪ 𝐵) ⊆ ℋ → (𝑥 ∈ (span‘(𝐴 ∪ 𝐵)) ↔ ∀𝑦 ∈ Sℋ
((𝐴 ∪ 𝐵) ⊆ 𝑦 → 𝑥 ∈ 𝑦))) |
50 | 47, 49 | ax-mp 5 |
. . . . . . 7
⊢ (𝑥 ∈ (span‘(𝐴 ∪ 𝐵)) ↔ ∀𝑦 ∈ Sℋ
((𝐴 ∪ 𝐵) ⊆ 𝑦 → 𝑥 ∈ 𝑦)) |
51 | 46, 50 | sylibr 237 |
. . . . . 6
⊢
(∀𝑦 ∈
Sℋ (((𝐴 ⊆ 𝑦 → 𝑧 ∈ 𝑦) ∧ (𝐵 ⊆ 𝑦 → 𝑤 ∈ 𝑦)) ∧ 𝑥 = (𝑧 +ℎ 𝑤)) → 𝑥 ∈ (span‘(𝐴 ∪ 𝐵))) |
52 | 35, 51 | syl 17 |
. . . . 5
⊢ (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 +ℎ 𝑤)) → 𝑥 ∈ (span‘(𝐴 ∪ 𝐵))) |
53 | 52 | exlimivv 1940 |
. . . 4
⊢
(∃𝑧∃𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 +ℎ 𝑤)) → 𝑥 ∈ (span‘(𝐴 ∪ 𝐵))) |
54 | 24, 53 | sylbi 220 |
. . 3
⊢ (𝑥 ∈ ((span‘𝐴) +ℋ
(span‘𝐵)) →
𝑥 ∈ (span‘(𝐴 ∪ 𝐵))) |
55 | 54 | ssriv 3905 |
. 2
⊢
((span‘𝐴)
+ℋ (span‘𝐵)) ⊆ (span‘(𝐴 ∪ 𝐵)) |
56 | 21, 55 | eqssi 3917 |
1
⊢
(span‘(𝐴 ∪
𝐵)) = ((span‘𝐴) +ℋ
(span‘𝐵)) |