HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanuni Structured version   Visualization version   GIF version

Theorem spanuni 31473
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanun.1 𝐴 ⊆ ℋ
spanun.2 𝐵 ⊆ ℋ
Assertion
Ref Expression
spanuni (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))

Proof of Theorem spanuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanun.1 . . . . . . 7 𝐴 ⊆ ℋ
2 spancl 31265 . . . . . . 7 (𝐴 ⊆ ℋ → (span‘𝐴) ∈ S )
31, 2ax-mp 5 . . . . . 6 (span‘𝐴) ∈ S
4 spanun.2 . . . . . . 7 𝐵 ⊆ ℋ
5 spancl 31265 . . . . . . 7 (𝐵 ⊆ ℋ → (span‘𝐵) ∈ S )
64, 5ax-mp 5 . . . . . 6 (span‘𝐵) ∈ S
73, 6shscli 31246 . . . . 5 ((span‘𝐴) + (span‘𝐵)) ∈ S
87shssii 31142 . . . 4 ((span‘𝐴) + (span‘𝐵)) ⊆ ℋ
9 spanss2 31274 . . . . . . 7 (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴))
101, 9ax-mp 5 . . . . . 6 𝐴 ⊆ (span‘𝐴)
11 spanss2 31274 . . . . . . 7 (𝐵 ⊆ ℋ → 𝐵 ⊆ (span‘𝐵))
124, 11ax-mp 5 . . . . . 6 𝐵 ⊆ (span‘𝐵)
13 unss12 4151 . . . . . 6 ((𝐴 ⊆ (span‘𝐴) ∧ 𝐵 ⊆ (span‘𝐵)) → (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵)))
1410, 12, 13mp2an 692 . . . . 5 (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵))
153, 6shunssi 31297 . . . . 5 ((span‘𝐴) ∪ (span‘𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
1614, 15sstri 3956 . . . 4 (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))
17 spanss 31277 . . . 4 ((((span‘𝐴) + (span‘𝐵)) ⊆ ℋ ∧ (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))) → (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵))))
188, 16, 17mp2an 692 . . 3 (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵)))
19 spanid 31276 . . . 4 (((span‘𝐴) + (span‘𝐵)) ∈ S → (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵)))
207, 19ax-mp 5 . . 3 (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵))
2118, 20sseqtri 3995 . 2 (span‘(𝐴𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
223, 6shseli 31245 . . . . 5 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤))
23 r2ex 3174 . . . . 5 (∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
2422, 23bitri 275 . . . 4 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
25 vex 3451 . . . . . . . . . . 11 𝑧 ∈ V
2625elspani 31472 . . . . . . . . . 10 (𝐴 ⊆ ℋ → (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦)))
271, 26ax-mp 5 . . . . . . . . 9 (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦))
28 vex 3451 . . . . . . . . . . 11 𝑤 ∈ V
2928elspani 31472 . . . . . . . . . 10 (𝐵 ⊆ ℋ → (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦)))
304, 29ax-mp 5 . . . . . . . . 9 (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦))
3127, 30anbi12i 628 . . . . . . . 8 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
32 r19.26 3091 . . . . . . . 8 (∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
3331, 32bitr4i 278 . . . . . . 7 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ ∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)))
34 r19.27v 3166 . . . . . . 7 ((∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
3533, 34sylanb 581 . . . . . 6 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
36 unss 4153 . . . . . . . . . . . 12 ((𝐴𝑦𝐵𝑦) ↔ (𝐴𝐵) ⊆ 𝑦)
37 anim12 808 . . . . . . . . . . . 12 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝑦𝐵𝑦) → (𝑧𝑦𝑤𝑦)))
3836, 37biimtrrid 243 . . . . . . . . . . 11 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧𝑦𝑤𝑦)))
39 shaddcl 31146 . . . . . . . . . . . 12 ((𝑦S𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦)
40393expib 1122 . . . . . . . . . . 11 (𝑦S → ((𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦))
4138, 40sylan9r 508 . . . . . . . . . 10 ((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧 + 𝑤) ∈ 𝑦))
42 eleq1 2816 . . . . . . . . . . 11 (𝑥 = (𝑧 + 𝑤) → (𝑥𝑦 ↔ (𝑧 + 𝑤) ∈ 𝑦))
4342biimprd 248 . . . . . . . . . 10 (𝑥 = (𝑧 + 𝑤) → ((𝑧 + 𝑤) ∈ 𝑦𝑥𝑦))
4441, 43sylan9 507 . . . . . . . . 9 (((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
4544expl 457 . . . . . . . 8 (𝑦S → ((((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
4645ralimia 3063 . . . . . . 7 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
471, 4unssi 4154 . . . . . . . 8 (𝐴𝐵) ⊆ ℋ
48 vex 3451 . . . . . . . . 9 𝑥 ∈ V
4948elspani 31472 . . . . . . . 8 ((𝐴𝐵) ⊆ ℋ → (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
5047, 49ax-mp 5 . . . . . . 7 (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
5146, 50sylibr 234 . . . . . 6 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5235, 51syl 17 . . . . 5 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5352exlimivv 1932 . . . 4 (∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5424, 53sylbi 217 . . 3 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5554ssriv 3950 . 2 ((span‘𝐴) + (span‘𝐵)) ⊆ (span‘(𝐴𝐵))
5621, 55eqssi 3963 1 (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cun 3912  wss 3914  cfv 6511  (class class class)co 7387  chba 30848   + cva 30849   S csh 30857   + cph 30860  spancspn 30861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-lm 23116  df-haus 23202  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-hnorm 30897  df-hvsub 30900  df-hlim 30901  df-sh 31136  df-ch 31150  df-ch0 31182  df-shs 31237  df-span 31238
This theorem is referenced by:  spanun  31474  spanunsni  31508  spansnji  31575
  Copyright terms: Public domain W3C validator