HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanuni Structured version   Visualization version   GIF version

Theorem spanuni 31479
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanun.1 𝐴 ⊆ ℋ
spanun.2 𝐵 ⊆ ℋ
Assertion
Ref Expression
spanuni (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))

Proof of Theorem spanuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanun.1 . . . . . . 7 𝐴 ⊆ ℋ
2 spancl 31271 . . . . . . 7 (𝐴 ⊆ ℋ → (span‘𝐴) ∈ S )
31, 2ax-mp 5 . . . . . 6 (span‘𝐴) ∈ S
4 spanun.2 . . . . . . 7 𝐵 ⊆ ℋ
5 spancl 31271 . . . . . . 7 (𝐵 ⊆ ℋ → (span‘𝐵) ∈ S )
64, 5ax-mp 5 . . . . . 6 (span‘𝐵) ∈ S
73, 6shscli 31252 . . . . 5 ((span‘𝐴) + (span‘𝐵)) ∈ S
87shssii 31148 . . . 4 ((span‘𝐴) + (span‘𝐵)) ⊆ ℋ
9 spanss2 31280 . . . . . . 7 (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴))
101, 9ax-mp 5 . . . . . 6 𝐴 ⊆ (span‘𝐴)
11 spanss2 31280 . . . . . . 7 (𝐵 ⊆ ℋ → 𝐵 ⊆ (span‘𝐵))
124, 11ax-mp 5 . . . . . 6 𝐵 ⊆ (span‘𝐵)
13 unss12 4153 . . . . . 6 ((𝐴 ⊆ (span‘𝐴) ∧ 𝐵 ⊆ (span‘𝐵)) → (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵)))
1410, 12, 13mp2an 692 . . . . 5 (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵))
153, 6shunssi 31303 . . . . 5 ((span‘𝐴) ∪ (span‘𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
1614, 15sstri 3958 . . . 4 (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))
17 spanss 31283 . . . 4 ((((span‘𝐴) + (span‘𝐵)) ⊆ ℋ ∧ (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))) → (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵))))
188, 16, 17mp2an 692 . . 3 (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵)))
19 spanid 31282 . . . 4 (((span‘𝐴) + (span‘𝐵)) ∈ S → (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵)))
207, 19ax-mp 5 . . 3 (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵))
2118, 20sseqtri 3997 . 2 (span‘(𝐴𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
223, 6shseli 31251 . . . . 5 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤))
23 r2ex 3175 . . . . 5 (∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
2422, 23bitri 275 . . . 4 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
25 vex 3454 . . . . . . . . . . 11 𝑧 ∈ V
2625elspani 31478 . . . . . . . . . 10 (𝐴 ⊆ ℋ → (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦)))
271, 26ax-mp 5 . . . . . . . . 9 (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦))
28 vex 3454 . . . . . . . . . . 11 𝑤 ∈ V
2928elspani 31478 . . . . . . . . . 10 (𝐵 ⊆ ℋ → (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦)))
304, 29ax-mp 5 . . . . . . . . 9 (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦))
3127, 30anbi12i 628 . . . . . . . 8 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
32 r19.26 3092 . . . . . . . 8 (∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
3331, 32bitr4i 278 . . . . . . 7 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ ∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)))
34 r19.27v 3167 . . . . . . 7 ((∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
3533, 34sylanb 581 . . . . . 6 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
36 unss 4155 . . . . . . . . . . . 12 ((𝐴𝑦𝐵𝑦) ↔ (𝐴𝐵) ⊆ 𝑦)
37 anim12 808 . . . . . . . . . . . 12 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝑦𝐵𝑦) → (𝑧𝑦𝑤𝑦)))
3836, 37biimtrrid 243 . . . . . . . . . . 11 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧𝑦𝑤𝑦)))
39 shaddcl 31152 . . . . . . . . . . . 12 ((𝑦S𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦)
40393expib 1122 . . . . . . . . . . 11 (𝑦S → ((𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦))
4138, 40sylan9r 508 . . . . . . . . . 10 ((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧 + 𝑤) ∈ 𝑦))
42 eleq1 2817 . . . . . . . . . . 11 (𝑥 = (𝑧 + 𝑤) → (𝑥𝑦 ↔ (𝑧 + 𝑤) ∈ 𝑦))
4342biimprd 248 . . . . . . . . . 10 (𝑥 = (𝑧 + 𝑤) → ((𝑧 + 𝑤) ∈ 𝑦𝑥𝑦))
4441, 43sylan9 507 . . . . . . . . 9 (((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
4544expl 457 . . . . . . . 8 (𝑦S → ((((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
4645ralimia 3064 . . . . . . 7 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
471, 4unssi 4156 . . . . . . . 8 (𝐴𝐵) ⊆ ℋ
48 vex 3454 . . . . . . . . 9 𝑥 ∈ V
4948elspani 31478 . . . . . . . 8 ((𝐴𝐵) ⊆ ℋ → (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
5047, 49ax-mp 5 . . . . . . 7 (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
5146, 50sylibr 234 . . . . . 6 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5235, 51syl 17 . . . . 5 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5352exlimivv 1932 . . . 4 (∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5424, 53sylbi 217 . . 3 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5554ssriv 3952 . 2 ((span‘𝐴) + (span‘𝐵)) ⊆ (span‘(𝐴𝐵))
5621, 55eqssi 3965 1 (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  cun 3914  wss 3916  cfv 6513  (class class class)co 7389  chba 30854   + cva 30855   S csh 30863   + cph 30866  spancspn 30867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154  ax-hilex 30934  ax-hfvadd 30935  ax-hvcom 30936  ax-hvass 30937  ax-hv0cl 30938  ax-hvaddid 30939  ax-hfvmul 30940  ax-hvmulid 30941  ax-hvmulass 30942  ax-hvdistr1 30943  ax-hvdistr2 30944  ax-hvmul0 30945  ax-hfi 31014  ax-his1 31017  ax-his2 31018  ax-his3 31019  ax-his4 31020
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-n0 12449  df-z 12536  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-icc 13319  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-topgen 17412  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-top 22787  df-topon 22804  df-bases 22839  df-lm 23122  df-haus 23208  df-grpo 30428  df-gid 30429  df-ginv 30430  df-gdiv 30431  df-ablo 30480  df-vc 30494  df-nv 30527  df-va 30530  df-ba 30531  df-sm 30532  df-0v 30533  df-vs 30534  df-nmcv 30535  df-ims 30536  df-hnorm 30903  df-hvsub 30906  df-hlim 30907  df-sh 31142  df-ch 31156  df-ch0 31188  df-shs 31243  df-span 31244
This theorem is referenced by:  spanun  31480  spanunsni  31514  spansnji  31581
  Copyright terms: Public domain W3C validator