HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanuni Structured version   Visualization version   GIF version

Theorem spanuni 30486
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanun.1 𝐴 ⊆ ℋ
spanun.2 𝐵 ⊆ ℋ
Assertion
Ref Expression
spanuni (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))

Proof of Theorem spanuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanun.1 . . . . . . 7 𝐴 ⊆ ℋ
2 spancl 30278 . . . . . . 7 (𝐴 ⊆ ℋ → (span‘𝐴) ∈ S )
31, 2ax-mp 5 . . . . . 6 (span‘𝐴) ∈ S
4 spanun.2 . . . . . . 7 𝐵 ⊆ ℋ
5 spancl 30278 . . . . . . 7 (𝐵 ⊆ ℋ → (span‘𝐵) ∈ S )
64, 5ax-mp 5 . . . . . 6 (span‘𝐵) ∈ S
73, 6shscli 30259 . . . . 5 ((span‘𝐴) + (span‘𝐵)) ∈ S
87shssii 30155 . . . 4 ((span‘𝐴) + (span‘𝐵)) ⊆ ℋ
9 spanss2 30287 . . . . . . 7 (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴))
101, 9ax-mp 5 . . . . . 6 𝐴 ⊆ (span‘𝐴)
11 spanss2 30287 . . . . . . 7 (𝐵 ⊆ ℋ → 𝐵 ⊆ (span‘𝐵))
124, 11ax-mp 5 . . . . . 6 𝐵 ⊆ (span‘𝐵)
13 unss12 4142 . . . . . 6 ((𝐴 ⊆ (span‘𝐴) ∧ 𝐵 ⊆ (span‘𝐵)) → (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵)))
1410, 12, 13mp2an 690 . . . . 5 (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵))
153, 6shunssi 30310 . . . . 5 ((span‘𝐴) ∪ (span‘𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
1614, 15sstri 3953 . . . 4 (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))
17 spanss 30290 . . . 4 ((((span‘𝐴) + (span‘𝐵)) ⊆ ℋ ∧ (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))) → (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵))))
188, 16, 17mp2an 690 . . 3 (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵)))
19 spanid 30289 . . . 4 (((span‘𝐴) + (span‘𝐵)) ∈ S → (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵)))
207, 19ax-mp 5 . . 3 (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵))
2118, 20sseqtri 3980 . 2 (span‘(𝐴𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
223, 6shseli 30258 . . . . 5 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤))
23 r2ex 3192 . . . . 5 (∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
2422, 23bitri 274 . . . 4 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
25 vex 3449 . . . . . . . . . . 11 𝑧 ∈ V
2625elspani 30485 . . . . . . . . . 10 (𝐴 ⊆ ℋ → (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦)))
271, 26ax-mp 5 . . . . . . . . 9 (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦))
28 vex 3449 . . . . . . . . . . 11 𝑤 ∈ V
2928elspani 30485 . . . . . . . . . 10 (𝐵 ⊆ ℋ → (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦)))
304, 29ax-mp 5 . . . . . . . . 9 (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦))
3127, 30anbi12i 627 . . . . . . . 8 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
32 r19.26 3114 . . . . . . . 8 (∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
3331, 32bitr4i 277 . . . . . . 7 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ ∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)))
34 r19.27v 3184 . . . . . . 7 ((∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
3533, 34sylanb 581 . . . . . 6 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
36 unss 4144 . . . . . . . . . . . 12 ((𝐴𝑦𝐵𝑦) ↔ (𝐴𝐵) ⊆ 𝑦)
37 anim12 807 . . . . . . . . . . . 12 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝑦𝐵𝑦) → (𝑧𝑦𝑤𝑦)))
3836, 37biimtrrid 242 . . . . . . . . . . 11 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧𝑦𝑤𝑦)))
39 shaddcl 30159 . . . . . . . . . . . 12 ((𝑦S𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦)
40393expib 1122 . . . . . . . . . . 11 (𝑦S → ((𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦))
4138, 40sylan9r 509 . . . . . . . . . 10 ((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧 + 𝑤) ∈ 𝑦))
42 eleq1 2825 . . . . . . . . . . 11 (𝑥 = (𝑧 + 𝑤) → (𝑥𝑦 ↔ (𝑧 + 𝑤) ∈ 𝑦))
4342biimprd 247 . . . . . . . . . 10 (𝑥 = (𝑧 + 𝑤) → ((𝑧 + 𝑤) ∈ 𝑦𝑥𝑦))
4441, 43sylan9 508 . . . . . . . . 9 (((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
4544expl 458 . . . . . . . 8 (𝑦S → ((((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
4645ralimia 3083 . . . . . . 7 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
471, 4unssi 4145 . . . . . . . 8 (𝐴𝐵) ⊆ ℋ
48 vex 3449 . . . . . . . . 9 𝑥 ∈ V
4948elspani 30485 . . . . . . . 8 ((𝐴𝐵) ⊆ ℋ → (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
5047, 49ax-mp 5 . . . . . . 7 (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
5146, 50sylibr 233 . . . . . 6 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5235, 51syl 17 . . . . 5 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5352exlimivv 1935 . . . 4 (∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5424, 53sylbi 216 . . 3 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5554ssriv 3948 . 2 ((span‘𝐴) + (span‘𝐵)) ⊆ (span‘(𝐴𝐵))
5621, 55eqssi 3960 1 (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  cun 3908  wss 3910  cfv 6496  (class class class)co 7357  chba 29861   + cva 29862   S csh 29870   + cph 29873  spancspn 29874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-lm 22580  df-haus 22666  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-hnorm 29910  df-hvsub 29913  df-hlim 29914  df-sh 30149  df-ch 30163  df-ch0 30195  df-shs 30250  df-span 30251
This theorem is referenced by:  spanun  30487  spanunsni  30521  spansnji  30588
  Copyright terms: Public domain W3C validator