HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanuni Structured version   Visualization version   GIF version

Theorem spanuni 31471
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanun.1 𝐴 ⊆ ℋ
spanun.2 𝐵 ⊆ ℋ
Assertion
Ref Expression
spanuni (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))

Proof of Theorem spanuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanun.1 . . . . . . 7 𝐴 ⊆ ℋ
2 spancl 31263 . . . . . . 7 (𝐴 ⊆ ℋ → (span‘𝐴) ∈ S )
31, 2ax-mp 5 . . . . . 6 (span‘𝐴) ∈ S
4 spanun.2 . . . . . . 7 𝐵 ⊆ ℋ
5 spancl 31263 . . . . . . 7 (𝐵 ⊆ ℋ → (span‘𝐵) ∈ S )
64, 5ax-mp 5 . . . . . 6 (span‘𝐵) ∈ S
73, 6shscli 31244 . . . . 5 ((span‘𝐴) + (span‘𝐵)) ∈ S
87shssii 31140 . . . 4 ((span‘𝐴) + (span‘𝐵)) ⊆ ℋ
9 spanss2 31272 . . . . . . 7 (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴))
101, 9ax-mp 5 . . . . . 6 𝐴 ⊆ (span‘𝐴)
11 spanss2 31272 . . . . . . 7 (𝐵 ⊆ ℋ → 𝐵 ⊆ (span‘𝐵))
124, 11ax-mp 5 . . . . . 6 𝐵 ⊆ (span‘𝐵)
13 unss12 4163 . . . . . 6 ((𝐴 ⊆ (span‘𝐴) ∧ 𝐵 ⊆ (span‘𝐵)) → (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵)))
1410, 12, 13mp2an 692 . . . . 5 (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵))
153, 6shunssi 31295 . . . . 5 ((span‘𝐴) ∪ (span‘𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
1614, 15sstri 3968 . . . 4 (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))
17 spanss 31275 . . . 4 ((((span‘𝐴) + (span‘𝐵)) ⊆ ℋ ∧ (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))) → (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵))))
188, 16, 17mp2an 692 . . 3 (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵)))
19 spanid 31274 . . . 4 (((span‘𝐴) + (span‘𝐵)) ∈ S → (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵)))
207, 19ax-mp 5 . . 3 (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵))
2118, 20sseqtri 4007 . 2 (span‘(𝐴𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
223, 6shseli 31243 . . . . 5 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤))
23 r2ex 3181 . . . . 5 (∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
2422, 23bitri 275 . . . 4 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
25 vex 3463 . . . . . . . . . . 11 𝑧 ∈ V
2625elspani 31470 . . . . . . . . . 10 (𝐴 ⊆ ℋ → (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦)))
271, 26ax-mp 5 . . . . . . . . 9 (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦))
28 vex 3463 . . . . . . . . . . 11 𝑤 ∈ V
2928elspani 31470 . . . . . . . . . 10 (𝐵 ⊆ ℋ → (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦)))
304, 29ax-mp 5 . . . . . . . . 9 (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦))
3127, 30anbi12i 628 . . . . . . . 8 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
32 r19.26 3098 . . . . . . . 8 (∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
3331, 32bitr4i 278 . . . . . . 7 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ ∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)))
34 r19.27v 3173 . . . . . . 7 ((∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
3533, 34sylanb 581 . . . . . 6 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
36 unss 4165 . . . . . . . . . . . 12 ((𝐴𝑦𝐵𝑦) ↔ (𝐴𝐵) ⊆ 𝑦)
37 anim12 808 . . . . . . . . . . . 12 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝑦𝐵𝑦) → (𝑧𝑦𝑤𝑦)))
3836, 37biimtrrid 243 . . . . . . . . . . 11 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧𝑦𝑤𝑦)))
39 shaddcl 31144 . . . . . . . . . . . 12 ((𝑦S𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦)
40393expib 1122 . . . . . . . . . . 11 (𝑦S → ((𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦))
4138, 40sylan9r 508 . . . . . . . . . 10 ((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧 + 𝑤) ∈ 𝑦))
42 eleq1 2822 . . . . . . . . . . 11 (𝑥 = (𝑧 + 𝑤) → (𝑥𝑦 ↔ (𝑧 + 𝑤) ∈ 𝑦))
4342biimprd 248 . . . . . . . . . 10 (𝑥 = (𝑧 + 𝑤) → ((𝑧 + 𝑤) ∈ 𝑦𝑥𝑦))
4441, 43sylan9 507 . . . . . . . . 9 (((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
4544expl 457 . . . . . . . 8 (𝑦S → ((((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
4645ralimia 3070 . . . . . . 7 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
471, 4unssi 4166 . . . . . . . 8 (𝐴𝐵) ⊆ ℋ
48 vex 3463 . . . . . . . . 9 𝑥 ∈ V
4948elspani 31470 . . . . . . . 8 ((𝐴𝐵) ⊆ ℋ → (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
5047, 49ax-mp 5 . . . . . . 7 (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
5146, 50sylibr 234 . . . . . 6 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5235, 51syl 17 . . . . 5 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5352exlimivv 1932 . . . 4 (∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5424, 53sylbi 217 . . 3 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5554ssriv 3962 . 2 ((span‘𝐴) + (span‘𝐵)) ⊆ (span‘(𝐴𝐵))
5621, 55eqssi 3975 1 (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  cun 3924  wss 3926  cfv 6530  (class class class)co 7403  chba 30846   + cva 30847   S csh 30855   + cph 30858  spancspn 30859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207  ax-hilex 30926  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmulass 30934  ax-hvdistr1 30935  ax-hvdistr2 30936  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his2 31010  ax-his3 31011  ax-his4 31012
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-icc 13367  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-lm 23165  df-haus 23251  df-grpo 30420  df-gid 30421  df-ginv 30422  df-gdiv 30423  df-ablo 30472  df-vc 30486  df-nv 30519  df-va 30522  df-ba 30523  df-sm 30524  df-0v 30525  df-vs 30526  df-nmcv 30527  df-ims 30528  df-hnorm 30895  df-hvsub 30898  df-hlim 30899  df-sh 31134  df-ch 31148  df-ch0 31180  df-shs 31235  df-span 31236
This theorem is referenced by:  spanun  31472  spanunsni  31506  spansnji  31573
  Copyright terms: Public domain W3C validator