| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivw | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ralrimivw.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ralrimivw | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivw.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralrimiv 3145 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Copyright terms: Public domain | W3C validator |