MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndif Structured version   Visualization version   GIF version

Theorem psgndif 21539
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
psgndif.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgndif.s 𝑆 = (pmSgn‘𝑁)
psgndif.z 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
Assertion
Ref Expression
psgndif ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄)))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑆(𝑞)   𝑁(𝑞)   𝑍(𝑞)

Proof of Theorem psgndif
Dummy variables 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgndif.p . . . . . . . . . 10 𝑃 = (Base‘(SymGrp‘𝑁))
2 eqid 2731 . . . . . . . . . 10 ran (pmTrsp‘(𝑁 ∖ {𝐾})) = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
3 eqid 2731 . . . . . . . . . 10 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
4 eqid 2731 . . . . . . . . . 10 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5 eqid 2731 . . . . . . . . . 10 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
61, 2, 3, 4, 5psgnfix2 21536 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟)))
76imp 406 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
87ad2antrr 726 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
91, 2, 3, 4, 5psgndiflemA 21538 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟)))))
109imp 406 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁))) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
11103anassrs 1361 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
1211adantlrr 721 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
13 eqeq1 2735 . . . . . . . . . . 11 (𝑠 = (-1↑(♯‘𝑤)) → (𝑠 = (-1↑(♯‘𝑟)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
1413ad2antll 729 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → (𝑠 = (-1↑(♯‘𝑟)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
1514adantr 480 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑠 = (-1↑(♯‘𝑟)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
1612, 15sylibrd 259 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → 𝑠 = (-1↑(♯‘𝑟))))
1716ralrimiva 3124 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → ∀𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → 𝑠 = (-1↑(♯‘𝑟))))
188, 17r19.29imd 3097 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))))
1918rexlimdva2 3135 . . . . 5 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
201, 2, 3psgnfix1 21535 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)))
2120imp 406 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))
2221ad2antrr 726 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))
23 simp-4l 782 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}))
24 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})))
2524adantr 480 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})))
26 simpr 484 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))
27 simp-4r 783 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑟 ∈ Word ran (pmTrsp‘𝑁))
2825, 26, 273jca 1128 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)))
29 simpr 484 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
3029ad2antrr 726 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
3123, 28, 30, 9syl3c 66 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟)))
3231eqcomd 2737 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤)))
3332ex 412 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
3433adantlrr 721 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
35 eqeq1 2735 . . . . . . . . . . 11 (𝑠 = (-1↑(♯‘𝑟)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
3635ad2antll 729 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
3736adantr 480 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
3834, 37sylibrd 259 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → 𝑠 = (-1↑(♯‘𝑤))))
3938ralrimiva 3124 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → ∀𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → 𝑠 = (-1↑(♯‘𝑤))))
4022, 39r19.29imd 3097 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
4140rexlimdva2 3135 . . . . 5 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
4219, 41impbid 212 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
4342iotabidv 6465 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (℩𝑠𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
44 diffi 9084 . . . . 5 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
4544ad2antrr 726 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑁 ∖ {𝐾}) ∈ Fin)
46 eqid 2731 . . . . . 6 {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
47 eqid 2731 . . . . . 6 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
48 eqid 2731 . . . . . 6 (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾})
491, 46, 47, 48symgfixelsi 19347 . . . . 5 ((𝐾𝑁𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
5049adantll 714 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
51 psgndif.z . . . . 5 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
523, 47, 2, 51psgnvalfi 19426 . . . 4 (((𝑁 ∖ {𝐾}) ∈ Fin ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (℩𝑠𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
5345, 50, 52syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (℩𝑠𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
54 simpl 482 . . . 4 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
55 elrabi 3638 . . . 4 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄𝑃)
56 psgndif.s . . . . 5 𝑆 = (pmSgn‘𝑁)
574, 1, 5, 56psgnvalfi 19426 . . . 4 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) = (℩𝑠𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
5854, 55, 57syl2an 596 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑆𝑄) = (℩𝑠𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
5943, 53, 583eqtr4d 2776 . 2 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄))
6059ex 412 1 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  cdif 3894  {csn 4573  ran crn 5615  cres 5616  cio 6435  cfv 6481  (class class class)co 7346  Fincfn 8869  1c1 11007  -cneg 11345  cexp 13968  chash 14237  Word cword 14420  Basecbs 17120   Σg cgsu 17344  SymGrpcsymg 19281  pmTrspcpmtr 19353  pmSgncpsgn 19401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-reverse 14666  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-efmnd 18777  df-grp 18849  df-minusg 18850  df-subg 19036  df-ghm 19125  df-gim 19171  df-oppg 19258  df-symg 19282  df-pmtr 19354  df-psgn 19403
This theorem is referenced by:  copsgndif  21540
  Copyright terms: Public domain W3C validator