MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndif Structured version   Visualization version   GIF version

Theorem psgndif 21541
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
psgndif.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgndif.s 𝑆 = (pmSgn‘𝑁)
psgndif.z 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
Assertion
Ref Expression
psgndif ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄)))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑆(𝑞)   𝑁(𝑞)   𝑍(𝑞)

Proof of Theorem psgndif
Dummy variables 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgndif.p . . . . . . . . . 10 𝑃 = (Base‘(SymGrp‘𝑁))
2 eqid 2728 . . . . . . . . . 10 ran (pmTrsp‘(𝑁 ∖ {𝐾})) = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
3 eqid 2728 . . . . . . . . . 10 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
4 eqid 2728 . . . . . . . . . 10 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5 eqid 2728 . . . . . . . . . 10 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
61, 2, 3, 4, 5psgnfix2 21538 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟)))
76imp 405 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
87ad2antrr 724 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
91, 2, 3, 4, 5psgndiflemA 21540 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟)))))
109imp 405 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁))) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
11103anassrs 1357 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
1211adantlrr 719 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
13 eqeq1 2732 . . . . . . . . . . 11 (𝑠 = (-1↑(♯‘𝑤)) → (𝑠 = (-1↑(♯‘𝑟)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
1413ad2antll 727 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → (𝑠 = (-1↑(♯‘𝑟)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
1514adantr 479 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑠 = (-1↑(♯‘𝑟)) ↔ (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟))))
1612, 15sylibrd 258 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → 𝑠 = (-1↑(♯‘𝑟))))
1716ralrimiva 3143 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → ∀𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → 𝑠 = (-1↑(♯‘𝑟))))
188, 17r19.29imd 3115 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))))
1918rexlimdva2 3154 . . . . 5 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
201, 2, 3psgnfix1 21537 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)))
2120imp 405 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))
2221ad2antrr 724 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))
23 simp-4l 781 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → ((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}))
24 simpr 483 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})))
2524adantr 479 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})))
26 simpr 483 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))
27 simp-4r 782 . . . . . . . . . . . . . 14 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑟 ∈ Word ran (pmTrsp‘𝑁))
2825, 26, 273jca 1125 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)))
29 simpr 483 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
3029ad2antrr 724 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑟))
3123, 28, 30, 9syl3c 66 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑟)))
3231eqcomd 2734 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤)))
3332ex 411 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
3433adantlrr 719 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
35 eqeq1 2732 . . . . . . . . . . 11 (𝑠 = (-1↑(♯‘𝑟)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
3635ad2antll 727 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
3736adantr 479 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑟)) = (-1↑(♯‘𝑤))))
3834, 37sylibrd 258 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → 𝑠 = (-1↑(♯‘𝑤))))
3938ralrimiva 3143 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → ∀𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → 𝑠 = (-1↑(♯‘𝑤))))
4022, 39r19.29imd 3115 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
4140rexlimdva2 3154 . . . . 5 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
4219, 41impbid 211 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
4342iotabidv 6537 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (℩𝑠𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
44 diffi 9210 . . . . 5 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
4544ad2antrr 724 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑁 ∖ {𝐾}) ∈ Fin)
46 eqid 2728 . . . . . 6 {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
47 eqid 2728 . . . . . 6 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
48 eqid 2728 . . . . . 6 (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾})
491, 46, 47, 48symgfixelsi 19397 . . . . 5 ((𝐾𝑁𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
5049adantll 712 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
51 psgndif.z . . . . 5 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
523, 47, 2, 51psgnvalfi 19476 . . . 4 (((𝑁 ∖ {𝐾}) ∈ Fin ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (℩𝑠𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
5345, 50, 52syl2anc 582 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (℩𝑠𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
54 simpl 481 . . . 4 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
55 elrabi 3678 . . . 4 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄𝑃)
56 psgndif.s . . . . 5 𝑆 = (pmSgn‘𝑁)
574, 1, 5, 56psgnvalfi 19476 . . . 4 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) = (℩𝑠𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
5854, 55, 57syl2an 594 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑆𝑄) = (℩𝑠𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))))
5943, 53, 583eqtr4d 2778 . 2 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄))
6059ex 411 1 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3067  {crab 3430  cdif 3946  {csn 4632  ran crn 5683  cres 5684  cio 6503  cfv 6553  (class class class)co 7426  Fincfn 8970  1c1 11147  -cneg 11483  cexp 14066  chash 14329  Word cword 14504  Basecbs 17187   Σg cgsu 17429  SymGrpcsymg 19328  pmTrspcpmtr 19403  pmSgncpsgn 19451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-ot 4641  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-seq 14007  df-exp 14067  df-hash 14330  df-word 14505  df-lsw 14553  df-concat 14561  df-s1 14586  df-substr 14631  df-pfx 14661  df-splice 14740  df-reverse 14749  df-s2 14839  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-tset 17259  df-0g 17430  df-gsum 17431  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-submnd 18748  df-efmnd 18828  df-grp 18900  df-minusg 18901  df-subg 19085  df-ghm 19175  df-gim 19220  df-oppg 19304  df-symg 19329  df-pmtr 19404  df-psgn 19453
This theorem is referenced by:  copsgndif  21542
  Copyright terms: Public domain W3C validator