Step | Hyp | Ref
| Expression |
1 | | psgndif.p |
. . . . . . . . . 10
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
2 | | eqid 2738 |
. . . . . . . . . 10
⊢ ran
(pmTrsp‘(𝑁 ∖
{𝐾})) = ran
(pmTrsp‘(𝑁 ∖
{𝐾})) |
3 | | eqid 2738 |
. . . . . . . . . 10
⊢
(SymGrp‘(𝑁
∖ {𝐾})) =
(SymGrp‘(𝑁 ∖
{𝐾})) |
4 | | eqid 2738 |
. . . . . . . . . 10
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
5 | | eqid 2738 |
. . . . . . . . . 10
⊢ ran
(pmTrsp‘𝑁) = ran
(pmTrsp‘𝑁) |
6 | 1, 2, 3, 4, 5 | psgnfix2 20716 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟))) |
7 | 6 | imp 406 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) |
8 | 7 | ad2antrr 722 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) |
9 | 1, 2, 3, 4, 5 | psgndiflemA 20718 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) →
(-1↑(♯‘𝑤))
= (-1↑(♯‘𝑟))))) |
10 | 9 | imp 406 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁))) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) →
(-1↑(♯‘𝑤))
= (-1↑(♯‘𝑟)))) |
11 | 10 | 3anassrs 1358 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) →
(-1↑(♯‘𝑤))
= (-1↑(♯‘𝑟)))) |
12 | 11 | adantlrr 717 |
. . . . . . . . 9
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) →
(-1↑(♯‘𝑤))
= (-1↑(♯‘𝑟)))) |
13 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑠 = (-1↑(♯‘𝑤)) → (𝑠 = (-1↑(♯‘𝑟)) ↔ (-1↑(♯‘𝑤)) =
(-1↑(♯‘𝑟)))) |
14 | 13 | ad2antll 725 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → (𝑠 = (-1↑(♯‘𝑟)) ↔ (-1↑(♯‘𝑤)) =
(-1↑(♯‘𝑟)))) |
15 | 14 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑠 = (-1↑(♯‘𝑟)) ↔ (-1↑(♯‘𝑤)) =
(-1↑(♯‘𝑟)))) |
16 | 12, 15 | sylibrd 258 |
. . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) → (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → 𝑠 = (-1↑(♯‘𝑟)))) |
17 | 16 | ralrimiva 3107 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → ∀𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) → 𝑠 = (-1↑(♯‘𝑟)))) |
18 | 8, 17 | r19.29imd 3185 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) |
19 | 18 | rexlimdva2 3215 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) → ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))))) |
20 | 1, 2, 3 | psgnfix1 20715 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤))) |
21 | 20 | imp 406 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) |
22 | 21 | ad2antrr 722 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))(𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) |
23 | | simp-4l 779 |
. . . . . . . . . . . . 13
⊢
(((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾})) |
24 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) |
25 | 24 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) |
26 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) |
27 | | simp-4r 780 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑟 ∈ Word ran (pmTrsp‘𝑁)) |
28 | 25, 26, 27 | 3jca 1126 |
. . . . . . . . . . . . 13
⊢
(((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → (𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾})) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁))) |
29 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) |
30 | 29 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢
(((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) → 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) |
31 | 23, 28, 30, 9 | syl3c 66 |
. . . . . . . . . . . 12
⊢
(((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) →
(-1↑(♯‘𝑤))
= (-1↑(♯‘𝑟))) |
32 | 31 | eqcomd 2744 |
. . . . . . . . . . 11
⊢
(((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤)) →
(-1↑(♯‘𝑟))
= (-1↑(♯‘𝑤))) |
33 | 32 | ex 412 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ 𝑄 = ((SymGrp‘𝑁) Σg 𝑟)) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) →
(-1↑(♯‘𝑟))
= (-1↑(♯‘𝑤)))) |
34 | 33 | adantlrr 717 |
. . . . . . . . 9
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) →
(-1↑(♯‘𝑟))
= (-1↑(♯‘𝑤)))) |
35 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑠 = (-1↑(♯‘𝑟)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑟)) =
(-1↑(♯‘𝑤)))) |
36 | 35 | ad2antll 725 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑟)) =
(-1↑(♯‘𝑤)))) |
37 | 36 | adantr 480 |
. . . . . . . . 9
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑟)) =
(-1↑(♯‘𝑤)))) |
38 | 34, 37 | sylibrd 258 |
. . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) ∧ 𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → 𝑠 = (-1↑(♯‘𝑤)))) |
39 | 38 | ralrimiva 3107 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → ∀𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) → 𝑠 = (-1↑(♯‘𝑤)))) |
40 | 22, 39 | r19.29imd 3185 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ 𝑟 ∈ Word ran (pmTrsp‘𝑁)) ∧ (𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟)))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) |
41 | 40 | rexlimdva2 3215 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))) → ∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
42 | 19, 41 | impbid 211 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))))) |
43 | 42 | iotabidv 6402 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))))) |
44 | | diffi 8979 |
. . . . 5
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) |
45 | 44 | ad2antrr 722 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑁 ∖ {𝐾}) ∈ Fin) |
46 | | eqid 2738 |
. . . . . 6
⊢ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} |
47 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
48 | | eqid 2738 |
. . . . . 6
⊢ (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾}) |
49 | 1, 46, 47, 48 | symgfixelsi 18958 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) |
50 | 49 | adantll 710 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) |
51 | | psgndif.z |
. . . . 5
⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) |
52 | 3, 47, 2, 51 | psgnvalfi 19037 |
. . . 4
⊢ (((𝑁 ∖ {𝐾}) ∈ Fin ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
53 | 45, 50, 52 | syl2anc 583 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (℩𝑠∃𝑤 ∈ Word ran (pmTrsp‘(𝑁 ∖ {𝐾}))((𝑄 ↾ (𝑁 ∖ {𝐾})) = ((SymGrp‘(𝑁 ∖ {𝐾})) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
54 | | simpl 482 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
55 | | elrabi 3611 |
. . . 4
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → 𝑄 ∈ 𝑃) |
56 | | psgndif.s |
. . . . 5
⊢ 𝑆 = (pmSgn‘𝑁) |
57 | 4, 1, 5, 56 | psgnvalfi 19037 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) = (℩𝑠∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))))) |
58 | 54, 55, 57 | syl2an 595 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑆‘𝑄) = (℩𝑠∃𝑟 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑟) ∧ 𝑠 = (-1↑(♯‘𝑟))))) |
59 | 43, 53, 58 | 3eqtr4d 2788 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄)) |
60 | 59 | ex 412 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆‘𝑄))) |