|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > r19.40 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.) | 
| Ref | Expression | 
|---|---|
| r19.40 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | reximi 3083 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∃𝑥 ∈ 𝐴 𝜑) | 
| 3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | reximi 3083 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∃𝑥 ∈ 𝐴 𝜓) | 
| 5 | 2, 4 | jca 511 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3070 | 
| This theorem is referenced by: rexanuz 15385 txflf 24015 metequiv2 24524 mzpcompact2lem 42767 | 
| Copyright terms: Public domain | W3C validator |