| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.40 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| r19.40 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | reximi 3075 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∃𝑥 ∈ 𝐴 𝜑) |
| 3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 4 | 3 | reximi 3075 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∃𝑥 ∈ 𝐴 𝜓) |
| 5 | 2, 4 | jca 511 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3062 |
| This theorem is referenced by: rexanuz 15369 txflf 23949 metequiv2 24454 mzpcompact2lem 42741 |
| Copyright terms: Public domain | W3C validator |