Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.40 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
r19.40 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | reximi 3178 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∃𝑥 ∈ 𝐴 𝜑) |
3 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
4 | 3 | reximi 3178 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → ∃𝑥 ∈ 𝐴 𝜓) |
5 | 2, 4 | jca 512 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) → (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3070 |
This theorem is referenced by: rexanuz 15057 txflf 23157 metequiv2 23666 mzpcompact2lem 40573 |
Copyright terms: Public domain | W3C validator |