MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.40 Structured version   Visualization version   GIF version

Theorem r19.40 3265
Description: Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.40 (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓))

Proof of Theorem r19.40
StepHypRef Expression
1 simpl 487 . . 3 ((𝜑𝜓) → 𝜑)
21reximi 3172 . 2 (∃𝑥𝐴 (𝜑𝜓) → ∃𝑥𝐴 𝜑)
3 simpr 489 . . 3 ((𝜑𝜓) → 𝜓)
43reximi 3172 . 2 (∃𝑥𝐴 (𝜑𝜓) → ∃𝑥𝐴 𝜓)
52, 4jca 516 1 (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  wrex 3072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 210  df-an 401  df-ex 1783  df-ral 3076  df-rex 3077
This theorem is referenced by:  rexanuz  14743  txflf  22696  metequiv2  23202  mzpcompact2lem  40055
  Copyright terms: Public domain W3C validator