Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexsb Structured version   Visualization version   GIF version

Theorem rexsb 44478
Description: An equivalent expression for restricted existence, analogous to exsb 2357. (Contributed by Alexander van der Vekens, 1-Jul-2017.)
Assertion
Ref Expression
rexsb (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥(𝑥 = 𝑦𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rexsb
StepHypRef Expression
1 nfv 1918 . 2 𝑦𝜑
2 nfa1 2150 . 2 𝑥𝑥(𝑥 = 𝑦𝜑)
3 ax12v 2174 . . 3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
4 sp 2178 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
54com12 32 . . 3 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
63, 5impbid 211 . 2 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
71, 2, 6cbvrexw 3364 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069
This theorem is referenced by:  rexrsb  44479  2rexsb  44480
  Copyright terms: Public domain W3C validator