![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexsb | Structured version Visualization version GIF version |
Description: An equivalent expression for restricted existence, analogous to exsb 2362. (Contributed by Alexander van der Vekens, 1-Jul-2017.) |
Ref | Expression |
---|---|
rexsb | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1914 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfa1 2151 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | ax12v 2178 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
4 | sp 2183 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
5 | 4 | com12 32 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
6 | 3, 5 | impbid 212 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
7 | 1, 2, 6 | cbvrexw 3307 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2157 ax-12 2177 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1779 df-nf 1783 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 |
This theorem is referenced by: rexrsb 47078 2rexsb 47079 |
Copyright terms: Public domain | W3C validator |