![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiota0ndef | Structured version Visualization version GIF version |
Description: Example for an undefined alternate iota being no set, i.e., ∀𝑦𝑦 ∈ 𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). This is different from iota0ndef 46989, where the iota still is a set (the empty set). (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
aiota0ndef | ⊢ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 5319 | . . . 4 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
2 | 1 | intnanr 487 | . . 3 ⊢ ¬ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥) |
3 | df-eu 2567 | . . 3 ⊢ (∃!𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥)) | |
4 | 2, 3 | mtbir 323 | . 2 ⊢ ¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥 |
5 | df-nel 3045 | . . 3 ⊢ ((℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V ↔ ¬ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∈ V) | |
6 | aiotaexb 47039 | . . 3 ⊢ (∃!𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∈ V) | |
7 | 5, 6 | xchbinxr 335 | . 2 ⊢ ((℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V ↔ ¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥) |
8 | 4, 7 | mpbir 231 | 1 ⊢ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1535 ∃wex 1776 ∈ wcel 2106 ∃*wmo 2536 ∃!weu 2566 ∉ wnel 3044 Vcvv 3478 ℩'caiota 47033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-sn 4632 df-int 4952 df-aiota 47035 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |