| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aiota0ndef | Structured version Visualization version GIF version | ||
| Description: Example for an undefined alternate iota being no set, i.e., ∀𝑦𝑦 ∈ 𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). This is different from iota0ndef 47068, where the iota still is a set (the empty set). (Contributed by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| aiota0ndef | ⊢ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nalset 5283 | . . . 4 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
| 2 | 1 | intnanr 487 | . . 3 ⊢ ¬ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥) |
| 3 | df-eu 2568 | . . 3 ⊢ (∃!𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥)) | |
| 4 | 2, 3 | mtbir 323 | . 2 ⊢ ¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥 |
| 5 | df-nel 3037 | . . 3 ⊢ ((℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V ↔ ¬ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∈ V) | |
| 6 | aiotaexb 47118 | . . 3 ⊢ (∃!𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∈ V) | |
| 7 | 5, 6 | xchbinxr 335 | . 2 ⊢ ((℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V ↔ ¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥) |
| 8 | 4, 7 | mpbir 231 | 1 ⊢ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2108 ∃*wmo 2537 ∃!weu 2567 ∉ wnel 3036 Vcvv 3459 ℩'caiota 47112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 df-nul 4309 df-sn 4602 df-int 4923 df-aiota 47114 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |