Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiota0ndef Structured version   Visualization version   GIF version

Theorem aiota0ndef 44476
Description: Example for an undefined alternate iota being no set, i.e., 𝑦𝑦𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). This is different from iota0ndef 44420, where the iota still is a set (the empty set). (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiota0ndef (℩'𝑥𝑦 𝑦𝑥) ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem aiota0ndef
StepHypRef Expression
1 nalset 5232 . . . 4 ¬ ∃𝑥𝑦 𝑦𝑥
21intnanr 487 . . 3 ¬ (∃𝑥𝑦 𝑦𝑥 ∧ ∃*𝑥𝑦 𝑦𝑥)
3 df-eu 2569 . . 3 (∃!𝑥𝑦 𝑦𝑥 ↔ (∃𝑥𝑦 𝑦𝑥 ∧ ∃*𝑥𝑦 𝑦𝑥))
42, 3mtbir 322 . 2 ¬ ∃!𝑥𝑦 𝑦𝑥
5 df-nel 3049 . . 3 ((℩'𝑥𝑦 𝑦𝑥) ∉ V ↔ ¬ (℩'𝑥𝑦 𝑦𝑥) ∈ V)
6 aiotaexb 44468 . . 3 (∃!𝑥𝑦 𝑦𝑥 ↔ (℩'𝑥𝑦 𝑦𝑥) ∈ V)
75, 6xchbinxr 334 . 2 ((℩'𝑥𝑦 𝑦𝑥) ∉ V ↔ ¬ ∃!𝑥𝑦 𝑦𝑥)
84, 7mpbir 230 1 (℩'𝑥𝑦 𝑦𝑥) ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1537  wex 1783  wcel 2108  ∃*wmo 2538  ∃!weu 2568  wnel 3048  Vcvv 3422  ℩'caiota 44462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-nel 3049  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-int 4877  df-aiota 44464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator