Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiota0ndef | Structured version Visualization version GIF version |
Description: Example for an undefined alternate iota being no set, i.e., ∀𝑦𝑦 ∈ 𝑥 is a wff not satisfied by a (unique) value 𝑥 (there is no set, and therefore certainly no unique set, which contains every set). This is different from iota0ndef 44533, where the iota still is a set (the empty set). (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
aiota0ndef | ⊢ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nalset 5237 | . . . 4 ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | |
2 | 1 | intnanr 488 | . . 3 ⊢ ¬ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥) |
3 | df-eu 2569 | . . 3 ⊢ (∃!𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ (∃𝑥∀𝑦 𝑦 ∈ 𝑥 ∧ ∃*𝑥∀𝑦 𝑦 ∈ 𝑥)) | |
4 | 2, 3 | mtbir 323 | . 2 ⊢ ¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥 |
5 | df-nel 3050 | . . 3 ⊢ ((℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V ↔ ¬ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∈ V) | |
6 | aiotaexb 44581 | . . 3 ⊢ (∃!𝑥∀𝑦 𝑦 ∈ 𝑥 ↔ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∈ V) | |
7 | 5, 6 | xchbinxr 335 | . 2 ⊢ ((℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V ↔ ¬ ∃!𝑥∀𝑦 𝑦 ∈ 𝑥) |
8 | 4, 7 | mpbir 230 | 1 ⊢ (℩'𝑥∀𝑦 𝑦 ∈ 𝑥) ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ∃*wmo 2538 ∃!weu 2568 ∉ wnel 3049 Vcvv 3432 ℩'caiota 44575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-nel 3050 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-int 4880 df-aiota 44577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |