Step | Hyp | Ref
| Expression |
1 | | vex 3426 |
. . . . . . . 8
⊢ 𝑢 ∈ V |
2 | | vex 3426 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
3 | 1, 2 | xpex 7581 |
. . . . . . 7
⊢ (𝑢 × 𝑣) ∈ V |
4 | 3 | rgen2w 3076 |
. . . . . 6
⊢
∀𝑢 ∈
𝐽 ∀𝑣 ∈ 𝐾 (𝑢 × 𝑣) ∈ V |
5 | | eqid 2738 |
. . . . . . 7
⊢ (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) = (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) |
6 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑧 = (𝑢 × 𝑣) → (〈𝑅, 𝑆〉 ∈ 𝑧 ↔ 〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣))) |
7 | | sseq2 3943 |
. . . . . . . . 9
⊢ (𝑧 = (𝑢 × 𝑣) → ((𝐻 “ ℎ) ⊆ 𝑧 ↔ (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣))) |
8 | 7 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑧 = (𝑢 × 𝑣) → (∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧 ↔ ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣))) |
9 | 6, 8 | imbi12d 344 |
. . . . . . 7
⊢ (𝑧 = (𝑢 × 𝑣) → ((〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧) ↔ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)))) |
10 | 5, 9 | ralrnmpo 7390 |
. . . . . 6
⊢
(∀𝑢 ∈
𝐽 ∀𝑣 ∈ 𝐾 (𝑢 × 𝑣) ∈ V → (∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧) ↔ ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)))) |
11 | 4, 10 | ax-mp 5 |
. . . . 5
⊢
(∀𝑧 ∈
ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧) ↔ ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣))) |
12 | | opelxp 5616 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ↔ (𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣)) |
13 | 12 | biancomi 462 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ↔ (𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢)) |
14 | 13 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ↔ (𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢))) |
15 | | r19.40 3272 |
. . . . . . . . . . . . . . . . 17
⊢
(∃ℎ ∈
𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) → (∃ℎ ∈ 𝐿 ∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∃ℎ ∈ 𝐿 ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
16 | | raleq 3333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑓 → (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ↔ ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢)) |
17 | 16 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃ℎ ∈
𝐿 ∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ↔ ∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢) |
18 | | raleq 3333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑔 → (∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣 ↔ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
19 | 18 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃ℎ ∈
𝐿 ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣 ↔ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) |
20 | 17, 19 | anbi12i 626 |
. . . . . . . . . . . . . . . . 17
⊢
((∃ℎ ∈
𝐿 ∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∃ℎ ∈ 𝐿 ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) ↔ (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
21 | 15, 20 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢
(∃ℎ ∈
𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) → (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
22 | | reeanv 3292 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑓 ∈
𝐿 ∃𝑔 ∈ 𝐿 (∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) ↔ (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
23 | | txflf.l |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑍)) |
24 | | filin 22913 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿) → (𝑓 ∩ 𝑔) ∈ 𝐿) |
25 | 24 | 3expb 1118 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ (𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿)) → (𝑓 ∩ 𝑔) ∈ 𝐿) |
26 | 23, 25 | sylan 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿)) → (𝑓 ∩ 𝑔) ∈ 𝐿) |
27 | | inss1 4159 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∩ 𝑔) ⊆ 𝑓 |
28 | | ssralv 3983 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∩ 𝑔) ⊆ 𝑓 → (∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢)) |
29 | 27, 28 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑛 ∈
𝑓 (𝐹‘𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢) |
30 | | inss2 4160 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∩ 𝑔) ⊆ 𝑔 |
31 | | ssralv 3983 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∩ 𝑔) ⊆ 𝑔 → (∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣)) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑛 ∈
𝑔 (𝐺‘𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣) |
33 | 29, 32 | anim12i 612 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑛 ∈
𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) → (∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣)) |
34 | | raleq 3333 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = (𝑓 ∩ 𝑔) → (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ↔ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢)) |
35 | | raleq 3333 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = (𝑓 ∩ 𝑔) → (∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣 ↔ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣)) |
36 | 34, 35 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = (𝑓 ∩ 𝑔) → ((∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) ↔ (∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣))) |
37 | 36 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∩ 𝑔) ∈ 𝐿 ∧ (∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣)) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
38 | 26, 33, 37 | syl2an 595 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿)) ∧ (∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
39 | 38 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿)) → ((∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
40 | 39 | rexlimdvva 3222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝐿 (∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
41 | 22, 40 | syl5bir 242 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
42 | 21, 41 | impbid2 225 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) ↔ (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣))) |
43 | | df-ima 5593 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐻 “ ℎ) = ran (𝐻 ↾ ℎ) |
44 | | filelss 22911 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ ℎ ∈ 𝐿) → ℎ ⊆ 𝑍) |
45 | 23, 44 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → ℎ ⊆ 𝑍) |
46 | | txflf.h |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) |
47 | 46 | reseq1i 5876 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐻 ↾ ℎ) = ((𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ↾ ℎ) |
48 | | resmpt 5934 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ ⊆ 𝑍 → ((𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ↾ ℎ) = (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
49 | 47, 48 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ ⊆ 𝑍 → (𝐻 ↾ ℎ) = (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
50 | 45, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → (𝐻 ↾ ℎ) = (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
51 | 50 | rneqd 5836 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → ran (𝐻 ↾ ℎ) = ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
52 | 43, 51 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → (𝐻 “ ℎ) = ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
53 | 52 | sseq1d 3948 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → ((𝐻 “ ℎ) ⊆ (𝑢 × 𝑣) ↔ ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣))) |
54 | | opelxp 5616 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑢 × 𝑣) ↔ ((𝐹‘𝑛) ∈ 𝑢 ∧ (𝐺‘𝑛) ∈ 𝑣)) |
55 | 54 | ralbii 3090 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
ℎ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑢 × 𝑣) ↔ ∀𝑛 ∈ ℎ ((𝐹‘𝑛) ∈ 𝑢 ∧ (𝐺‘𝑛) ∈ 𝑣)) |
56 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) |
57 | 56 | fmpt 6966 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑛 ∈
ℎ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑢 × 𝑣) ↔ (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉):ℎ⟶(𝑢 × 𝑣)) |
58 | | opex 5373 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ V |
59 | 58, 56 | fnmpti 6560 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) Fn ℎ |
60 | | df-f 6422 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉):ℎ⟶(𝑢 × 𝑣) ↔ ((𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) Fn ℎ ∧ ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣))) |
61 | 59, 60 | mpbiran 705 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉):ℎ⟶(𝑢 × 𝑣) ↔ ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣)) |
62 | 57, 61 | bitri 274 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
ℎ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑢 × 𝑣) ↔ ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣)) |
63 | | r19.26 3094 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
ℎ ((𝐹‘𝑛) ∈ 𝑢 ∧ (𝐺‘𝑛) ∈ 𝑣) ↔ (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
64 | 55, 62, 63 | 3bitr3i 300 |
. . . . . . . . . . . . . . . . 17
⊢ (ran
(𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
65 | 53, 64 | bitrdi 286 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → ((𝐻 “ ℎ) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
66 | 65 | rexbidva 3224 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣) ↔ ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
67 | | txflf.f |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
68 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → 𝐹:𝑍⟶𝑋) |
69 | 68 | ffund 6588 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → Fun 𝐹) |
70 | | filelss 22911 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓 ∈ 𝐿) → 𝑓 ⊆ 𝑍) |
71 | 23, 70 | sylan 579 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → 𝑓 ⊆ 𝑍) |
72 | 68 | fdmd 6595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → dom 𝐹 = 𝑍) |
73 | 71, 72 | sseqtrrd 3958 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → 𝑓 ⊆ dom 𝐹) |
74 | | funimass4 6816 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ dom 𝐹) → ((𝐹 “ 𝑓) ⊆ 𝑢 ↔ ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢)) |
75 | 69, 73, 74 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → ((𝐹 “ 𝑓) ⊆ 𝑢 ↔ ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢)) |
76 | 75 | rexbidva 3224 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ↔ ∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢)) |
77 | | txflf.g |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺:𝑍⟶𝑌) |
78 | 77 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → 𝐺:𝑍⟶𝑌) |
79 | 78 | ffund 6588 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → Fun 𝐺) |
80 | | filelss 22911 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑔 ∈ 𝐿) → 𝑔 ⊆ 𝑍) |
81 | 23, 80 | sylan 579 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → 𝑔 ⊆ 𝑍) |
82 | 78 | fdmd 6595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → dom 𝐺 = 𝑍) |
83 | 81, 82 | sseqtrrd 3958 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → 𝑔 ⊆ dom 𝐺) |
84 | | funimass4 6816 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
𝐺 ∧ 𝑔 ⊆ dom 𝐺) → ((𝐺 “ 𝑔) ⊆ 𝑣 ↔ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
85 | 79, 83, 84 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → ((𝐺 “ 𝑔) ⊆ 𝑣 ↔ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
86 | 85 | rexbidva 3224 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣 ↔ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
87 | 76, 86 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣))) |
88 | 42, 66, 87 | 3bitr4d 310 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣) ↔ (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
89 | 14, 88 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ((𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢) → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
90 | | impexp 450 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢) → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)) ↔ (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
91 | 89, 90 | bitrdi 286 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
92 | 91 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
93 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (𝑆 ∈ 𝑥 ↔ 𝑆 ∈ 𝑣)) |
94 | 93 | ralrab 3623 |
. . . . . . . . . . . 12
⊢
(∀𝑣 ∈
{𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)) ↔ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
95 | | r19.21v 3100 |
. . . . . . . . . . . 12
⊢
(∀𝑣 ∈
{𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)) ↔ (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
96 | 94, 95 | bitr3i 276 |
. . . . . . . . . . 11
⊢
(∀𝑣 ∈
𝐾 (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) ↔ (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
97 | 92, 96 | bitrdi 286 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
98 | 97 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
99 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (𝑅 ∈ 𝑥 ↔ 𝑅 ∈ 𝑢)) |
100 | 99 | ralrab 3623 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
101 | 98, 100 | bitr4di 288 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
102 | 101 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
103 | | txflf.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
104 | | toponmax 21983 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
105 | 103, 104 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
106 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑅 ∈ 𝑥 ↔ 𝑅 ∈ 𝑋)) |
107 | 106 | rspcev 3552 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐽 ∧ 𝑅 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 𝑅 ∈ 𝑥) |
108 | | rabn0 4316 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ 𝐽 𝑅 ∈ 𝑥) |
109 | 107, 108 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐽 ∧ 𝑅 ∈ 𝑋) → {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅) |
110 | 105, 109 | sylan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑅 ∈ 𝑋) → {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅) |
111 | | txflf.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
112 | | toponmax 21983 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) |
113 | 111, 112 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝐾) |
114 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑌 → (𝑆 ∈ 𝑥 ↔ 𝑆 ∈ 𝑌)) |
115 | 114 | rspcev 3552 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ 𝐾 ∧ 𝑆 ∈ 𝑌) → ∃𝑥 ∈ 𝐾 𝑆 ∈ 𝑥) |
116 | | rabn0 4316 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ 𝐾 𝑆 ∈ 𝑥) |
117 | 115, 116 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ 𝐾 ∧ 𝑆 ∈ 𝑌) → {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅) |
118 | 113, 117 | sylan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑆 ∈ 𝑌) → {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅) |
119 | 110, 118 | anim12dan 618 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → ({𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅ ∧ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅)) |
120 | | r19.28zv 4428 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅ → (∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
121 | 120 | ralbidv 3120 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ ∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
122 | | r19.27zv 4433 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
123 | 121, 122 | sylan9bbr 510 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅ ∧ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅) → (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
124 | 119, 123 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
125 | 102, 124 | bitrd 278 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
126 | 99 | ralrab 3623 |
. . . . . . 7
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ↔ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)) |
127 | 93 | ralrab 3623 |
. . . . . . 7
⊢
(∀𝑣 ∈
{𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣 ↔ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)) |
128 | 126, 127 | anbi12i 626 |
. . . . . 6
⊢
((∀𝑢 ∈
{𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
129 | 125, 128 | bitrdi 286 |
. . . . 5
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
130 | 11, 129 | syl5bb 282 |
. . . 4
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧) ↔ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
131 | 130 | pm5.32da 578 |
. . 3
⊢ (𝜑 → (((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
132 | | opelxp 5616 |
. . . 4
⊢
(〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ↔ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) |
133 | 132 | anbi1i 623 |
. . 3
⊢
((〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧))) |
134 | | an4 652 |
. . 3
⊢ (((𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)) ∧ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
135 | 131, 133,
134 | 3bitr4g 313 |
. 2
⊢ (𝜑 → ((〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)) ↔ ((𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)) ∧ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
136 | | eqid 2738 |
. . . . . . . 8
⊢ ran
(𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) |
137 | 136 | txval 22623 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)))) |
138 | 103, 111,
137 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)))) |
139 | 138 | oveq1d 7270 |
. . . . 5
⊢ (𝜑 → ((𝐽 ×t 𝐾) fLimf 𝐿) = ((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)) |
140 | 139 | fveq1d 6758 |
. . . 4
⊢ (𝜑 → (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) = (((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻)) |
141 | 140 | eleq2d 2824 |
. . 3
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ 〈𝑅, 𝑆〉 ∈ (((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻))) |
142 | | txtopon 22650 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
143 | 103, 111,
142 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
144 | 138, 143 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌))) |
145 | 67 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑋) |
146 | 77 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ 𝑌) |
147 | 145, 146 | opelxpd 5618 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) |
148 | 147, 46 | fmptd 6970 |
. . . 4
⊢ (𝜑 → 𝐻:𝑍⟶(𝑋 × 𝑌)) |
149 | | eqid 2738 |
. . . . 5
⊢
(topGen‘ran (𝑢
∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) |
150 | 149 | flftg 23055 |
. . . 4
⊢
(((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐻:𝑍⟶(𝑋 × 𝑌)) → (〈𝑅, 𝑆〉 ∈ (((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)))) |
151 | 144, 23, 148, 150 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)))) |
152 | 141, 151 | bitrd 278 |
. 2
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)))) |
153 | | isflf 23052 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐹:𝑍⟶𝑋) → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)))) |
154 | 103, 23, 67, 153 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)))) |
155 | | isflf 23052 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐺:𝑍⟶𝑌) → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
156 | 111, 23, 77, 155 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
157 | 154, 156 | anbi12d 630 |
. 2
⊢ (𝜑 → ((𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺)) ↔ ((𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)) ∧ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
158 | 135, 152,
157 | 3bitr4d 310 |
1
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺)))) |