MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txflf Structured version   Visualization version   GIF version

Theorem txflf 24035
Description: Two sequences converge in a filter iff the sequence of their ordered pairs converges. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
txflf.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txflf.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txflf.l (𝜑𝐿 ∈ (Fil‘𝑍))
txflf.f (𝜑𝐹:𝑍𝑋)
txflf.g (𝜑𝐺:𝑍𝑌)
txflf.h 𝐻 = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
Assertion
Ref Expression
txflf (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺))))
Distinct variable groups:   𝜑,𝑛   𝑛,𝐹   𝑛,𝐺   𝑛,𝑍   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝐻(𝑛)   𝐽(𝑛)   𝐾(𝑛)   𝐿(𝑛)

Proof of Theorem txflf
Dummy variables 𝑢 𝑣 𝑧 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . . . 8 𝑢 ∈ V
2 vex 3492 . . . . . . . 8 𝑣 ∈ V
31, 2xpex 7788 . . . . . . 7 (𝑢 × 𝑣) ∈ V
43rgen2w 3072 . . . . . 6 𝑢𝐽𝑣𝐾 (𝑢 × 𝑣) ∈ V
5 eqid 2740 . . . . . . 7 (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)) = (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))
6 eleq2 2833 . . . . . . . 8 (𝑧 = (𝑢 × 𝑣) → (⟨𝑅, 𝑆⟩ ∈ 𝑧 ↔ ⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣)))
7 sseq2 4035 . . . . . . . . 9 (𝑧 = (𝑢 × 𝑣) → ((𝐻) ⊆ 𝑧 ↔ (𝐻) ⊆ (𝑢 × 𝑣)))
87rexbidv 3185 . . . . . . . 8 (𝑧 = (𝑢 × 𝑣) → (∃𝐿 (𝐻) ⊆ 𝑧 ↔ ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)))
96, 8imbi12d 344 . . . . . . 7 (𝑧 = (𝑢 × 𝑣) → ((⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣))))
105, 9ralrnmpo 7589 . . . . . 6 (∀𝑢𝐽𝑣𝐾 (𝑢 × 𝑣) ∈ V → (∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ ∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣))))
114, 10ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ ∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)))
12 opelxp 5736 . . . . . . . . . . . . . . . 16 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑅𝑢𝑆𝑣))
1312biancomi 462 . . . . . . . . . . . . . . 15 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑆𝑣𝑅𝑢))
1413a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑆𝑣𝑅𝑢)))
15 r19.40 3125 . . . . . . . . . . . . . . . . 17 (∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) → (∃𝐿𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝐿𝑛 (𝐺𝑛) ∈ 𝑣))
16 raleq 3331 . . . . . . . . . . . . . . . . . . 19 ( = 𝑓 → (∀𝑛 (𝐹𝑛) ∈ 𝑢 ↔ ∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
1716cbvrexvw 3244 . . . . . . . . . . . . . . . . . 18 (∃𝐿𝑛 (𝐹𝑛) ∈ 𝑢 ↔ ∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢)
18 raleq 3331 . . . . . . . . . . . . . . . . . . 19 ( = 𝑔 → (∀𝑛 (𝐺𝑛) ∈ 𝑣 ↔ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
1918cbvrexvw 3244 . . . . . . . . . . . . . . . . . 18 (∃𝐿𝑛 (𝐺𝑛) ∈ 𝑣 ↔ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣)
2017, 19anbi12i 627 . . . . . . . . . . . . . . . . 17 ((∃𝐿𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝐿𝑛 (𝐺𝑛) ∈ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
2115, 20sylib 218 . . . . . . . . . . . . . . . 16 (∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) → (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
22 reeanv 3235 . . . . . . . . . . . . . . . . 17 (∃𝑓𝐿𝑔𝐿 (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
23 txflf.l . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐿 ∈ (Fil‘𝑍))
24 filin 23883 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓𝐿𝑔𝐿) → (𝑓𝑔) ∈ 𝐿)
25243expb 1120 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ (Fil‘𝑍) ∧ (𝑓𝐿𝑔𝐿)) → (𝑓𝑔) ∈ 𝐿)
2623, 25sylan 579 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓𝐿𝑔𝐿)) → (𝑓𝑔) ∈ 𝐿)
27 inss1 4258 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑔) ⊆ 𝑓
28 ssralv 4077 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑔) ⊆ 𝑓 → (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢))
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢)
30 inss2 4259 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑔) ⊆ 𝑔
31 ssralv 4077 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑔) ⊆ 𝑔 → (∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣))
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣)
3329, 32anim12i 612 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → (∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣))
34 raleq 3331 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑓𝑔) → (∀𝑛 (𝐹𝑛) ∈ 𝑢 ↔ ∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢))
35 raleq 3331 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑓𝑔) → (∀𝑛 (𝐺𝑛) ∈ 𝑣 ↔ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣))
3634, 35anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 ( = (𝑓𝑔) → ((∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) ↔ (∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣)))
3736rspcev 3635 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑔) ∈ 𝐿 ∧ (∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣)) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
3826, 33, 37syl2an 595 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓𝐿𝑔𝐿)) ∧ (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣)) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
3938ex 412 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑓𝐿𝑔𝐿)) → ((∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
4039rexlimdvva 3219 . . . . . . . . . . . . . . . . 17 (𝜑 → (∃𝑓𝐿𝑔𝐿 (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
4122, 40biimtrrid 243 . . . . . . . . . . . . . . . 16 (𝜑 → ((∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
4221, 41impbid2 226 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣)))
43 df-ima 5713 . . . . . . . . . . . . . . . . . . 19 (𝐻) = ran (𝐻)
44 filelss 23881 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝐿) → 𝑍)
4523, 44sylan 579 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐿) → 𝑍)
46 txflf.h . . . . . . . . . . . . . . . . . . . . . . 23 𝐻 = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
4746reseq1i 6005 . . . . . . . . . . . . . . . . . . . . . 22 (𝐻) = ((𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ↾ )
48 resmpt 6066 . . . . . . . . . . . . . . . . . . . . . 22 (𝑍 → ((𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ↾ ) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
4947, 48eqtrid 2792 . . . . . . . . . . . . . . . . . . . . 21 (𝑍 → (𝐻) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5045, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐿) → (𝐻) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5150rneqd 5963 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐿) → ran (𝐻) = ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5243, 51eqtrid 2792 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐿) → (𝐻) = ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5352sseq1d 4040 . . . . . . . . . . . . . . . . 17 ((𝜑𝐿) → ((𝐻) ⊆ (𝑢 × 𝑣) ↔ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣)))
54 opelxp 5736 . . . . . . . . . . . . . . . . . . 19 (⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ ((𝐹𝑛) ∈ 𝑢 ∧ (𝐺𝑛) ∈ 𝑣))
5554ralbii 3099 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ ∀𝑛 ((𝐹𝑛) ∈ 𝑢 ∧ (𝐺𝑛) ∈ 𝑣))
56 eqid 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
5756fmpt 7144 . . . . . . . . . . . . . . . . . . 19 (∀𝑛 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩):⟶(𝑢 × 𝑣))
58 opex 5484 . . . . . . . . . . . . . . . . . . . . 21 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ V
5958, 56fnmpti 6723 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) Fn
60 df-f 6577 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩):⟶(𝑢 × 𝑣) ↔ ((𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) Fn ∧ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣)))
6159, 60mpbiran 708 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩):⟶(𝑢 × 𝑣) ↔ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣))
6257, 61bitri 275 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣))
63 r19.26 3117 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ((𝐹𝑛) ∈ 𝑢 ∧ (𝐺𝑛) ∈ 𝑣) ↔ (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
6455, 62, 633bitr3i 301 . . . . . . . . . . . . . . . . 17 (ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
6553, 64bitrdi 287 . . . . . . . . . . . . . . . 16 ((𝜑𝐿) → ((𝐻) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
6665rexbidva 3183 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣) ↔ ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
67 txflf.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:𝑍𝑋)
6867adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝐿) → 𝐹:𝑍𝑋)
6968ffund 6751 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝐿) → Fun 𝐹)
70 filelss 23881 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓𝐿) → 𝑓𝑍)
7123, 70sylan 579 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝐿) → 𝑓𝑍)
7268fdmd 6757 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝐿) → dom 𝐹 = 𝑍)
7371, 72sseqtrrd 4050 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝐿) → 𝑓 ⊆ dom 𝐹)
74 funimass4 6986 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝑓 ⊆ dom 𝐹) → ((𝐹𝑓) ⊆ 𝑢 ↔ ∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
7569, 73, 74syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐿) → ((𝐹𝑓) ⊆ 𝑢 ↔ ∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
7675rexbidva 3183 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ↔ ∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
77 txflf.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:𝑍𝑌)
7877adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐿) → 𝐺:𝑍𝑌)
7978ffund 6751 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔𝐿) → Fun 𝐺)
80 filelss 23881 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑔𝐿) → 𝑔𝑍)
8123, 80sylan 579 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐿) → 𝑔𝑍)
8278fdmd 6757 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐿) → dom 𝐺 = 𝑍)
8381, 82sseqtrrd 4050 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔𝐿) → 𝑔 ⊆ dom 𝐺)
84 funimass4 6986 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐺𝑔 ⊆ dom 𝐺) → ((𝐺𝑔) ⊆ 𝑣 ↔ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
8579, 83, 84syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐿) → ((𝐺𝑔) ⊆ 𝑣 ↔ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
8685rexbidva 3183 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣 ↔ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
8776, 86anbi12d 631 . . . . . . . . . . . . . . 15 (𝜑 → ((∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣)))
8842, 66, 873bitr4d 311 . . . . . . . . . . . . . 14 (𝜑 → (∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣) ↔ (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
8914, 88imbi12d 344 . . . . . . . . . . . . 13 (𝜑 → ((⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ((𝑆𝑣𝑅𝑢) → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
90 impexp 450 . . . . . . . . . . . . 13 (((𝑆𝑣𝑅𝑢) → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)) ↔ (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
9189, 90bitrdi 287 . . . . . . . . . . . 12 (𝜑 → ((⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
9291ralbidv 3184 . . . . . . . . . . 11 (𝜑 → (∀𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑣𝐾 (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
93 eleq2 2833 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (𝑆𝑥𝑆𝑣))
9493ralrab 3715 . . . . . . . . . . . 12 (∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)) ↔ ∀𝑣𝐾 (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
95 r19.21v 3186 . . . . . . . . . . . 12 (∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)) ↔ (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
9694, 95bitr3i 277 . . . . . . . . . . 11 (∀𝑣𝐾 (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))) ↔ (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
9792, 96bitrdi 287 . . . . . . . . . 10 (𝜑 → (∀𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
9897ralbidv 3184 . . . . . . . . 9 (𝜑 → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢𝐽 (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
99 eleq2 2833 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑅𝑥𝑅𝑢))
10099ralrab 3715 . . . . . . . . 9 (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ ∀𝑢𝐽 (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
10198, 100bitr4di 289 . . . . . . . 8 (𝜑 → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
102101adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
103 txflf.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
104 toponmax 22953 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
105103, 104syl 17 . . . . . . . . . 10 (𝜑𝑋𝐽)
106 eleq2 2833 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑅𝑥𝑅𝑋))
107106rspcev 3635 . . . . . . . . . . 11 ((𝑋𝐽𝑅𝑋) → ∃𝑥𝐽 𝑅𝑥)
108 rabn0 4412 . . . . . . . . . . 11 ({𝑥𝐽𝑅𝑥} ≠ ∅ ↔ ∃𝑥𝐽 𝑅𝑥)
109107, 108sylibr 234 . . . . . . . . . 10 ((𝑋𝐽𝑅𝑋) → {𝑥𝐽𝑅𝑥} ≠ ∅)
110105, 109sylan 579 . . . . . . . . 9 ((𝜑𝑅𝑋) → {𝑥𝐽𝑅𝑥} ≠ ∅)
111 txflf.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘𝑌))
112 toponmax 22953 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
113111, 112syl 17 . . . . . . . . . 10 (𝜑𝑌𝐾)
114 eleq2 2833 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑆𝑥𝑆𝑌))
115114rspcev 3635 . . . . . . . . . . 11 ((𝑌𝐾𝑆𝑌) → ∃𝑥𝐾 𝑆𝑥)
116 rabn0 4412 . . . . . . . . . . 11 ({𝑥𝐾𝑆𝑥} ≠ ∅ ↔ ∃𝑥𝐾 𝑆𝑥)
117115, 116sylibr 234 . . . . . . . . . 10 ((𝑌𝐾𝑆𝑌) → {𝑥𝐾𝑆𝑥} ≠ ∅)
118113, 117sylan 579 . . . . . . . . 9 ((𝜑𝑆𝑌) → {𝑥𝐾𝑆𝑥} ≠ ∅)
119110, 118anim12dan 618 . . . . . . . 8 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → ({𝑥𝐽𝑅𝑥} ≠ ∅ ∧ {𝑥𝐾𝑆𝑥} ≠ ∅))
120 r19.28zv 4524 . . . . . . . . . 10 ({𝑥𝐾𝑆𝑥} ≠ ∅ → (∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
121120ralbidv 3184 . . . . . . . . 9 ({𝑥𝐾𝑆𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ ∀𝑢 ∈ {𝑥𝐽𝑅𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
122 r19.27zv 4529 . . . . . . . . 9 ({𝑥𝐽𝑅𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
123121, 122sylan9bbr 510 . . . . . . . 8 (({𝑥𝐽𝑅𝑥} ≠ ∅ ∧ {𝑥𝐾𝑆𝑥} ≠ ∅) → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
124119, 123syl 17 . . . . . . 7 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
125102, 124bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
12699ralrab 3715 . . . . . . 7 (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ↔ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢))
12793ralrab 3715 . . . . . . 7 (∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣 ↔ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))
128126, 127anbi12i 627 . . . . . 6 ((∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
129125, 128bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
13011, 129bitrid 283 . . . 4 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
131130pm5.32da 578 . . 3 (𝜑 → (((𝑅𝑋𝑆𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)) ↔ ((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
132 opelxp 5736 . . . 4 (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ↔ (𝑅𝑋𝑆𝑌))
133132anbi1i 623 . . 3 ((⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)) ↔ ((𝑅𝑋𝑆𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)))
134 an4 655 . . 3 (((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))) ↔ ((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
135131, 133, 1343bitr4g 314 . 2 (𝜑 → ((⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)) ↔ ((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
136 eqid 2740 . . . . . . . 8 ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)) = ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))
137136txval 23593 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
138103, 111, 137syl2anc 583 . . . . . 6 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
139138oveq1d 7463 . . . . 5 (𝜑 → ((𝐽 ×t 𝐾) fLimf 𝐿) = ((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿))
140139fveq1d 6922 . . . 4 (𝜑 → (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) = (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻))
141140eleq2d 2830 . . 3 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ ⟨𝑅, 𝑆⟩ ∈ (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻)))
142 txtopon 23620 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
143103, 111, 142syl2anc 583 . . . . 5 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
144138, 143eqeltrrd 2845 . . . 4 (𝜑 → (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌)))
14567ffvelcdmda 7118 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑋)
14677ffvelcdmda 7118 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ 𝑌)
147145, 146opelxpd 5739 . . . . 5 ((𝜑𝑛𝑍) → ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑋 × 𝑌))
148147, 46fmptd 7148 . . . 4 (𝜑𝐻:𝑍⟶(𝑋 × 𝑌))
149 eqid 2740 . . . . 5 (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)))
150149flftg 24025 . . . 4 (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐻:𝑍⟶(𝑋 × 𝑌)) → (⟨𝑅, 𝑆⟩ ∈ (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧))))
151144, 23, 148, 150syl3anc 1371 . . 3 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧))))
152141, 151bitrd 279 . 2 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧))))
153 isflf 24022 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐹:𝑍𝑋) → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢))))
154103, 23, 67, 153syl3anc 1371 . . 3 (𝜑 → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢))))
155 isflf 24022 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
156111, 23, 77, 155syl3anc 1371 . . 3 (𝜑 → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
157154, 156anbi12d 631 . 2 (𝜑 → ((𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺)) ↔ ((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
158135, 152, 1573bitr4d 311 1 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352  cop 4654  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  topGenctg 17497  TopOnctopon 22937   ×t ctx 23589  Filcfil 23874   fLimf cflf 23964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-topgen 17503  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-bases 22974  df-ntr 23049  df-nei 23127  df-tx 23591  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969
This theorem is referenced by:  flfcnp2  24036
  Copyright terms: Public domain W3C validator