MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txflf Structured version   Visualization version   GIF version

Theorem txflf 24015
Description: Two sequences converge in a filter iff the sequence of their ordered pairs converges. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
txflf.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txflf.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txflf.l (𝜑𝐿 ∈ (Fil‘𝑍))
txflf.f (𝜑𝐹:𝑍𝑋)
txflf.g (𝜑𝐺:𝑍𝑌)
txflf.h 𝐻 = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
Assertion
Ref Expression
txflf (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺))))
Distinct variable groups:   𝜑,𝑛   𝑛,𝐹   𝑛,𝐺   𝑛,𝑍   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝐻(𝑛)   𝐽(𝑛)   𝐾(𝑛)   𝐿(𝑛)

Proof of Theorem txflf
Dummy variables 𝑢 𝑣 𝑧 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3483 . . . . . . . 8 𝑢 ∈ V
2 vex 3483 . . . . . . . 8 𝑣 ∈ V
31, 2xpex 7774 . . . . . . 7 (𝑢 × 𝑣) ∈ V
43rgen2w 3065 . . . . . 6 𝑢𝐽𝑣𝐾 (𝑢 × 𝑣) ∈ V
5 eqid 2736 . . . . . . 7 (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)) = (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))
6 eleq2 2829 . . . . . . . 8 (𝑧 = (𝑢 × 𝑣) → (⟨𝑅, 𝑆⟩ ∈ 𝑧 ↔ ⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣)))
7 sseq2 4009 . . . . . . . . 9 (𝑧 = (𝑢 × 𝑣) → ((𝐻) ⊆ 𝑧 ↔ (𝐻) ⊆ (𝑢 × 𝑣)))
87rexbidv 3178 . . . . . . . 8 (𝑧 = (𝑢 × 𝑣) → (∃𝐿 (𝐻) ⊆ 𝑧 ↔ ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)))
96, 8imbi12d 344 . . . . . . 7 (𝑧 = (𝑢 × 𝑣) → ((⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣))))
105, 9ralrnmpo 7573 . . . . . 6 (∀𝑢𝐽𝑣𝐾 (𝑢 × 𝑣) ∈ V → (∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ ∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣))))
114, 10ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ ∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)))
12 opelxp 5720 . . . . . . . . . . . . . . . 16 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑅𝑢𝑆𝑣))
1312biancomi 462 . . . . . . . . . . . . . . 15 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑆𝑣𝑅𝑢))
1413a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑆𝑣𝑅𝑢)))
15 r19.40 3118 . . . . . . . . . . . . . . . . 17 (∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) → (∃𝐿𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝐿𝑛 (𝐺𝑛) ∈ 𝑣))
16 raleq 3322 . . . . . . . . . . . . . . . . . . 19 ( = 𝑓 → (∀𝑛 (𝐹𝑛) ∈ 𝑢 ↔ ∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
1716cbvrexvw 3237 . . . . . . . . . . . . . . . . . 18 (∃𝐿𝑛 (𝐹𝑛) ∈ 𝑢 ↔ ∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢)
18 raleq 3322 . . . . . . . . . . . . . . . . . . 19 ( = 𝑔 → (∀𝑛 (𝐺𝑛) ∈ 𝑣 ↔ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
1918cbvrexvw 3237 . . . . . . . . . . . . . . . . . 18 (∃𝐿𝑛 (𝐺𝑛) ∈ 𝑣 ↔ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣)
2017, 19anbi12i 628 . . . . . . . . . . . . . . . . 17 ((∃𝐿𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝐿𝑛 (𝐺𝑛) ∈ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
2115, 20sylib 218 . . . . . . . . . . . . . . . 16 (∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) → (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
22 reeanv 3228 . . . . . . . . . . . . . . . . 17 (∃𝑓𝐿𝑔𝐿 (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
23 txflf.l . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐿 ∈ (Fil‘𝑍))
24 filin 23863 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓𝐿𝑔𝐿) → (𝑓𝑔) ∈ 𝐿)
25243expb 1120 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ (Fil‘𝑍) ∧ (𝑓𝐿𝑔𝐿)) → (𝑓𝑔) ∈ 𝐿)
2623, 25sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓𝐿𝑔𝐿)) → (𝑓𝑔) ∈ 𝐿)
27 inss1 4236 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑔) ⊆ 𝑓
28 ssralv 4051 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑔) ⊆ 𝑓 → (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢))
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢)
30 inss2 4237 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑔) ⊆ 𝑔
31 ssralv 4051 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑔) ⊆ 𝑔 → (∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣))
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣)
3329, 32anim12i 613 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → (∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣))
34 raleq 3322 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑓𝑔) → (∀𝑛 (𝐹𝑛) ∈ 𝑢 ↔ ∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢))
35 raleq 3322 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑓𝑔) → (∀𝑛 (𝐺𝑛) ∈ 𝑣 ↔ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣))
3634, 35anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 ( = (𝑓𝑔) → ((∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) ↔ (∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣)))
3736rspcev 3621 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑔) ∈ 𝐿 ∧ (∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣)) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
3826, 33, 37syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓𝐿𝑔𝐿)) ∧ (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣)) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
3938ex 412 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑓𝐿𝑔𝐿)) → ((∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
4039rexlimdvva 3212 . . . . . . . . . . . . . . . . 17 (𝜑 → (∃𝑓𝐿𝑔𝐿 (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
4122, 40biimtrrid 243 . . . . . . . . . . . . . . . 16 (𝜑 → ((∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
4221, 41impbid2 226 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣)))
43 df-ima 5697 . . . . . . . . . . . . . . . . . . 19 (𝐻) = ran (𝐻)
44 filelss 23861 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝐿) → 𝑍)
4523, 44sylan 580 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐿) → 𝑍)
46 txflf.h . . . . . . . . . . . . . . . . . . . . . . 23 𝐻 = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
4746reseq1i 5992 . . . . . . . . . . . . . . . . . . . . . 22 (𝐻) = ((𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ↾ )
48 resmpt 6054 . . . . . . . . . . . . . . . . . . . . . 22 (𝑍 → ((𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ↾ ) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
4947, 48eqtrid 2788 . . . . . . . . . . . . . . . . . . . . 21 (𝑍 → (𝐻) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5045, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐿) → (𝐻) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5150rneqd 5948 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐿) → ran (𝐻) = ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5243, 51eqtrid 2788 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐿) → (𝐻) = ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5352sseq1d 4014 . . . . . . . . . . . . . . . . 17 ((𝜑𝐿) → ((𝐻) ⊆ (𝑢 × 𝑣) ↔ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣)))
54 opelxp 5720 . . . . . . . . . . . . . . . . . . 19 (⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ ((𝐹𝑛) ∈ 𝑢 ∧ (𝐺𝑛) ∈ 𝑣))
5554ralbii 3092 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ ∀𝑛 ((𝐹𝑛) ∈ 𝑢 ∧ (𝐺𝑛) ∈ 𝑣))
56 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
5756fmpt 7129 . . . . . . . . . . . . . . . . . . 19 (∀𝑛 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩):⟶(𝑢 × 𝑣))
58 opex 5468 . . . . . . . . . . . . . . . . . . . . 21 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ V
5958, 56fnmpti 6710 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) Fn
60 df-f 6564 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩):⟶(𝑢 × 𝑣) ↔ ((𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) Fn ∧ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣)))
6159, 60mpbiran 709 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩):⟶(𝑢 × 𝑣) ↔ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣))
6257, 61bitri 275 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣))
63 r19.26 3110 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ((𝐹𝑛) ∈ 𝑢 ∧ (𝐺𝑛) ∈ 𝑣) ↔ (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
6455, 62, 633bitr3i 301 . . . . . . . . . . . . . . . . 17 (ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
6553, 64bitrdi 287 . . . . . . . . . . . . . . . 16 ((𝜑𝐿) → ((𝐻) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
6665rexbidva 3176 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣) ↔ ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
67 txflf.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:𝑍𝑋)
6867adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝐿) → 𝐹:𝑍𝑋)
6968ffund 6739 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝐿) → Fun 𝐹)
70 filelss 23861 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓𝐿) → 𝑓𝑍)
7123, 70sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝐿) → 𝑓𝑍)
7268fdmd 6745 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝐿) → dom 𝐹 = 𝑍)
7371, 72sseqtrrd 4020 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝐿) → 𝑓 ⊆ dom 𝐹)
74 funimass4 6972 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝑓 ⊆ dom 𝐹) → ((𝐹𝑓) ⊆ 𝑢 ↔ ∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
7569, 73, 74syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐿) → ((𝐹𝑓) ⊆ 𝑢 ↔ ∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
7675rexbidva 3176 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ↔ ∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
77 txflf.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:𝑍𝑌)
7877adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐿) → 𝐺:𝑍𝑌)
7978ffund 6739 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔𝐿) → Fun 𝐺)
80 filelss 23861 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑔𝐿) → 𝑔𝑍)
8123, 80sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐿) → 𝑔𝑍)
8278fdmd 6745 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐿) → dom 𝐺 = 𝑍)
8381, 82sseqtrrd 4020 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔𝐿) → 𝑔 ⊆ dom 𝐺)
84 funimass4 6972 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐺𝑔 ⊆ dom 𝐺) → ((𝐺𝑔) ⊆ 𝑣 ↔ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
8579, 83, 84syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐿) → ((𝐺𝑔) ⊆ 𝑣 ↔ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
8685rexbidva 3176 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣 ↔ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
8776, 86anbi12d 632 . . . . . . . . . . . . . . 15 (𝜑 → ((∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣)))
8842, 66, 873bitr4d 311 . . . . . . . . . . . . . 14 (𝜑 → (∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣) ↔ (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
8914, 88imbi12d 344 . . . . . . . . . . . . 13 (𝜑 → ((⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ((𝑆𝑣𝑅𝑢) → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
90 impexp 450 . . . . . . . . . . . . 13 (((𝑆𝑣𝑅𝑢) → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)) ↔ (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
9189, 90bitrdi 287 . . . . . . . . . . . 12 (𝜑 → ((⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
9291ralbidv 3177 . . . . . . . . . . 11 (𝜑 → (∀𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑣𝐾 (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
93 eleq2 2829 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (𝑆𝑥𝑆𝑣))
9493ralrab 3698 . . . . . . . . . . . 12 (∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)) ↔ ∀𝑣𝐾 (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
95 r19.21v 3179 . . . . . . . . . . . 12 (∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)) ↔ (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
9694, 95bitr3i 277 . . . . . . . . . . 11 (∀𝑣𝐾 (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))) ↔ (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
9792, 96bitrdi 287 . . . . . . . . . 10 (𝜑 → (∀𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
9897ralbidv 3177 . . . . . . . . 9 (𝜑 → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢𝐽 (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
99 eleq2 2829 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑅𝑥𝑅𝑢))
10099ralrab 3698 . . . . . . . . 9 (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ ∀𝑢𝐽 (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
10198, 100bitr4di 289 . . . . . . . 8 (𝜑 → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
102101adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
103 txflf.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
104 toponmax 22933 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
105103, 104syl 17 . . . . . . . . . 10 (𝜑𝑋𝐽)
106 eleq2 2829 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑅𝑥𝑅𝑋))
107106rspcev 3621 . . . . . . . . . . 11 ((𝑋𝐽𝑅𝑋) → ∃𝑥𝐽 𝑅𝑥)
108 rabn0 4388 . . . . . . . . . . 11 ({𝑥𝐽𝑅𝑥} ≠ ∅ ↔ ∃𝑥𝐽 𝑅𝑥)
109107, 108sylibr 234 . . . . . . . . . 10 ((𝑋𝐽𝑅𝑋) → {𝑥𝐽𝑅𝑥} ≠ ∅)
110105, 109sylan 580 . . . . . . . . 9 ((𝜑𝑅𝑋) → {𝑥𝐽𝑅𝑥} ≠ ∅)
111 txflf.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘𝑌))
112 toponmax 22933 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
113111, 112syl 17 . . . . . . . . . 10 (𝜑𝑌𝐾)
114 eleq2 2829 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑆𝑥𝑆𝑌))
115114rspcev 3621 . . . . . . . . . . 11 ((𝑌𝐾𝑆𝑌) → ∃𝑥𝐾 𝑆𝑥)
116 rabn0 4388 . . . . . . . . . . 11 ({𝑥𝐾𝑆𝑥} ≠ ∅ ↔ ∃𝑥𝐾 𝑆𝑥)
117115, 116sylibr 234 . . . . . . . . . 10 ((𝑌𝐾𝑆𝑌) → {𝑥𝐾𝑆𝑥} ≠ ∅)
118113, 117sylan 580 . . . . . . . . 9 ((𝜑𝑆𝑌) → {𝑥𝐾𝑆𝑥} ≠ ∅)
119110, 118anim12dan 619 . . . . . . . 8 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → ({𝑥𝐽𝑅𝑥} ≠ ∅ ∧ {𝑥𝐾𝑆𝑥} ≠ ∅))
120 r19.28zv 4500 . . . . . . . . . 10 ({𝑥𝐾𝑆𝑥} ≠ ∅ → (∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
121120ralbidv 3177 . . . . . . . . 9 ({𝑥𝐾𝑆𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ ∀𝑢 ∈ {𝑥𝐽𝑅𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
122 r19.27zv 4505 . . . . . . . . 9 ({𝑥𝐽𝑅𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
123121, 122sylan9bbr 510 . . . . . . . 8 (({𝑥𝐽𝑅𝑥} ≠ ∅ ∧ {𝑥𝐾𝑆𝑥} ≠ ∅) → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
124119, 123syl 17 . . . . . . 7 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
125102, 124bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
12699ralrab 3698 . . . . . . 7 (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ↔ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢))
12793ralrab 3698 . . . . . . 7 (∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣 ↔ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))
128126, 127anbi12i 628 . . . . . 6 ((∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
129125, 128bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
13011, 129bitrid 283 . . . 4 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
131130pm5.32da 579 . . 3 (𝜑 → (((𝑅𝑋𝑆𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)) ↔ ((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
132 opelxp 5720 . . . 4 (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ↔ (𝑅𝑋𝑆𝑌))
133132anbi1i 624 . . 3 ((⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)) ↔ ((𝑅𝑋𝑆𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)))
134 an4 656 . . 3 (((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))) ↔ ((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
135131, 133, 1343bitr4g 314 . 2 (𝜑 → ((⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)) ↔ ((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
136 eqid 2736 . . . . . . . 8 ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)) = ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))
137136txval 23573 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
138103, 111, 137syl2anc 584 . . . . . 6 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
139138oveq1d 7447 . . . . 5 (𝜑 → ((𝐽 ×t 𝐾) fLimf 𝐿) = ((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿))
140139fveq1d 6907 . . . 4 (𝜑 → (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) = (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻))
141140eleq2d 2826 . . 3 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ ⟨𝑅, 𝑆⟩ ∈ (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻)))
142 txtopon 23600 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
143103, 111, 142syl2anc 584 . . . . 5 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
144138, 143eqeltrrd 2841 . . . 4 (𝜑 → (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌)))
14567ffvelcdmda 7103 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑋)
14677ffvelcdmda 7103 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ 𝑌)
147145, 146opelxpd 5723 . . . . 5 ((𝜑𝑛𝑍) → ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑋 × 𝑌))
148147, 46fmptd 7133 . . . 4 (𝜑𝐻:𝑍⟶(𝑋 × 𝑌))
149 eqid 2736 . . . . 5 (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)))
150149flftg 24005 . . . 4 (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐻:𝑍⟶(𝑋 × 𝑌)) → (⟨𝑅, 𝑆⟩ ∈ (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧))))
151144, 23, 148, 150syl3anc 1372 . . 3 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧))))
152141, 151bitrd 279 . 2 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧))))
153 isflf 24002 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐹:𝑍𝑋) → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢))))
154103, 23, 67, 153syl3anc 1372 . . 3 (𝜑 → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢))))
155 isflf 24002 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
156111, 23, 77, 155syl3anc 1372 . . 3 (𝜑 → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
157154, 156anbi12d 632 . 2 (𝜑 → ((𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺)) ↔ ((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
158135, 152, 1573bitr4d 311 1 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3435  Vcvv 3479  cin 3949  wss 3950  c0 4332  cop 4631  cmpt 5224   × cxp 5682  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  Fun wfun 6554   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  topGenctg 17483  TopOnctopon 22917   ×t ctx 23569  Filcfil 23854   fLimf cflf 23944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-map 8869  df-topgen 17489  df-fbas 21362  df-fg 21363  df-top 22901  df-topon 22918  df-bases 22954  df-ntr 23029  df-nei 23107  df-tx 23571  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949
This theorem is referenced by:  flfcnp2  24016
  Copyright terms: Public domain W3C validator