MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txflf Structured version   Visualization version   GIF version

Theorem txflf 23891
Description: Two sequences converge in a filter iff the sequence of their ordered pairs converges. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
txflf.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txflf.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txflf.l (𝜑𝐿 ∈ (Fil‘𝑍))
txflf.f (𝜑𝐹:𝑍𝑋)
txflf.g (𝜑𝐺:𝑍𝑌)
txflf.h 𝐻 = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
Assertion
Ref Expression
txflf (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺))))
Distinct variable groups:   𝜑,𝑛   𝑛,𝐹   𝑛,𝐺   𝑛,𝑍   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝐻(𝑛)   𝐽(𝑛)   𝐾(𝑛)   𝐿(𝑛)

Proof of Theorem txflf
Dummy variables 𝑢 𝑣 𝑧 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . . 8 𝑢 ∈ V
2 vex 3440 . . . . . . . 8 𝑣 ∈ V
31, 2xpex 7689 . . . . . . 7 (𝑢 × 𝑣) ∈ V
43rgen2w 3049 . . . . . 6 𝑢𝐽𝑣𝐾 (𝑢 × 𝑣) ∈ V
5 eqid 2729 . . . . . . 7 (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)) = (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))
6 eleq2 2817 . . . . . . . 8 (𝑧 = (𝑢 × 𝑣) → (⟨𝑅, 𝑆⟩ ∈ 𝑧 ↔ ⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣)))
7 sseq2 3962 . . . . . . . . 9 (𝑧 = (𝑢 × 𝑣) → ((𝐻) ⊆ 𝑧 ↔ (𝐻) ⊆ (𝑢 × 𝑣)))
87rexbidv 3153 . . . . . . . 8 (𝑧 = (𝑢 × 𝑣) → (∃𝐿 (𝐻) ⊆ 𝑧 ↔ ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)))
96, 8imbi12d 344 . . . . . . 7 (𝑧 = (𝑢 × 𝑣) → ((⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣))))
105, 9ralrnmpo 7488 . . . . . 6 (∀𝑢𝐽𝑣𝐾 (𝑢 × 𝑣) ∈ V → (∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ ∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣))))
114, 10ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ ∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)))
12 opelxp 5655 . . . . . . . . . . . . . . . 16 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑅𝑢𝑆𝑣))
1312biancomi 462 . . . . . . . . . . . . . . 15 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑆𝑣𝑅𝑢))
1413a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑆𝑣𝑅𝑢)))
15 r19.40 3095 . . . . . . . . . . . . . . . . 17 (∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) → (∃𝐿𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝐿𝑛 (𝐺𝑛) ∈ 𝑣))
16 raleq 3286 . . . . . . . . . . . . . . . . . . 19 ( = 𝑓 → (∀𝑛 (𝐹𝑛) ∈ 𝑢 ↔ ∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
1716cbvrexvw 3208 . . . . . . . . . . . . . . . . . 18 (∃𝐿𝑛 (𝐹𝑛) ∈ 𝑢 ↔ ∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢)
18 raleq 3286 . . . . . . . . . . . . . . . . . . 19 ( = 𝑔 → (∀𝑛 (𝐺𝑛) ∈ 𝑣 ↔ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
1918cbvrexvw 3208 . . . . . . . . . . . . . . . . . 18 (∃𝐿𝑛 (𝐺𝑛) ∈ 𝑣 ↔ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣)
2017, 19anbi12i 628 . . . . . . . . . . . . . . . . 17 ((∃𝐿𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝐿𝑛 (𝐺𝑛) ∈ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
2115, 20sylib 218 . . . . . . . . . . . . . . . 16 (∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) → (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
22 reeanv 3201 . . . . . . . . . . . . . . . . 17 (∃𝑓𝐿𝑔𝐿 (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
23 txflf.l . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐿 ∈ (Fil‘𝑍))
24 filin 23739 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓𝐿𝑔𝐿) → (𝑓𝑔) ∈ 𝐿)
25243expb 1120 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ (Fil‘𝑍) ∧ (𝑓𝐿𝑔𝐿)) → (𝑓𝑔) ∈ 𝐿)
2623, 25sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑓𝐿𝑔𝐿)) → (𝑓𝑔) ∈ 𝐿)
27 inss1 4188 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑔) ⊆ 𝑓
28 ssralv 4004 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑔) ⊆ 𝑓 → (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢))
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢)
30 inss2 4189 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑔) ⊆ 𝑔
31 ssralv 4004 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑔) ⊆ 𝑔 → (∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣))
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣)
3329, 32anim12i 613 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → (∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣))
34 raleq 3286 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑓𝑔) → (∀𝑛 (𝐹𝑛) ∈ 𝑢 ↔ ∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢))
35 raleq 3286 . . . . . . . . . . . . . . . . . . . . . 22 ( = (𝑓𝑔) → (∀𝑛 (𝐺𝑛) ∈ 𝑣 ↔ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣))
3634, 35anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 ( = (𝑓𝑔) → ((∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) ↔ (∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣)))
3736rspcev 3577 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑔) ∈ 𝐿 ∧ (∀𝑛 ∈ (𝑓𝑔)(𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓𝑔)(𝐺𝑛) ∈ 𝑣)) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
3826, 33, 37syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓𝐿𝑔𝐿)) ∧ (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣)) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
3938ex 412 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑓𝐿𝑔𝐿)) → ((∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
4039rexlimdvva 3186 . . . . . . . . . . . . . . . . 17 (𝜑 → (∃𝑓𝐿𝑔𝐿 (∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
4122, 40biimtrrid 243 . . . . . . . . . . . . . . . 16 (𝜑 → ((∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣) → ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
4221, 41impbid2 226 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣)))
43 df-ima 5632 . . . . . . . . . . . . . . . . . . 19 (𝐻) = ran (𝐻)
44 filelss 23737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝐿) → 𝑍)
4523, 44sylan 580 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐿) → 𝑍)
46 txflf.h . . . . . . . . . . . . . . . . . . . . . . 23 𝐻 = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
4746reseq1i 5926 . . . . . . . . . . . . . . . . . . . . . 22 (𝐻) = ((𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ↾ )
48 resmpt 5988 . . . . . . . . . . . . . . . . . . . . . 22 (𝑍 → ((𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ↾ ) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
4947, 48eqtrid 2776 . . . . . . . . . . . . . . . . . . . . 21 (𝑍 → (𝐻) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5045, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐿) → (𝐻) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5150rneqd 5880 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐿) → ran (𝐻) = ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5243, 51eqtrid 2776 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐿) → (𝐻) = ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
5352sseq1d 3967 . . . . . . . . . . . . . . . . 17 ((𝜑𝐿) → ((𝐻) ⊆ (𝑢 × 𝑣) ↔ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣)))
54 opelxp 5655 . . . . . . . . . . . . . . . . . . 19 (⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ ((𝐹𝑛) ∈ 𝑢 ∧ (𝐺𝑛) ∈ 𝑣))
5554ralbii 3075 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ ∀𝑛 ((𝐹𝑛) ∈ 𝑢 ∧ (𝐺𝑛) ∈ 𝑣))
56 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
5756fmpt 7044 . . . . . . . . . . . . . . . . . . 19 (∀𝑛 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩):⟶(𝑢 × 𝑣))
58 opex 5407 . . . . . . . . . . . . . . . . . . . . 21 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ V
5958, 56fnmpti 6625 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) Fn
60 df-f 6486 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩):⟶(𝑢 × 𝑣) ↔ ((𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) Fn ∧ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣)))
6159, 60mpbiran 709 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩):⟶(𝑢 × 𝑣) ↔ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣))
6257, 61bitri 275 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑢 × 𝑣) ↔ ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣))
63 r19.26 3089 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ((𝐹𝑛) ∈ 𝑢 ∧ (𝐺𝑛) ∈ 𝑣) ↔ (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
6455, 62, 633bitr3i 301 . . . . . . . . . . . . . . . . 17 (ran (𝑛 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣))
6553, 64bitrdi 287 . . . . . . . . . . . . . . . 16 ((𝜑𝐿) → ((𝐻) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
6665rexbidva 3151 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣) ↔ ∃𝐿 (∀𝑛 (𝐹𝑛) ∈ 𝑢 ∧ ∀𝑛 (𝐺𝑛) ∈ 𝑣)))
67 txflf.f . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:𝑍𝑋)
6867adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝐿) → 𝐹:𝑍𝑋)
6968ffund 6656 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝐿) → Fun 𝐹)
70 filelss 23737 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓𝐿) → 𝑓𝑍)
7123, 70sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝐿) → 𝑓𝑍)
7268fdmd 6662 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓𝐿) → dom 𝐹 = 𝑍)
7371, 72sseqtrrd 3973 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓𝐿) → 𝑓 ⊆ dom 𝐹)
74 funimass4 6887 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹𝑓 ⊆ dom 𝐹) → ((𝐹𝑓) ⊆ 𝑢 ↔ ∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
7569, 73, 74syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓𝐿) → ((𝐹𝑓) ⊆ 𝑢 ↔ ∀𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
7675rexbidva 3151 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ↔ ∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢))
77 txflf.g . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐺:𝑍𝑌)
7877adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐿) → 𝐺:𝑍𝑌)
7978ffund 6656 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔𝐿) → Fun 𝐺)
80 filelss 23737 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑔𝐿) → 𝑔𝑍)
8123, 80sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐿) → 𝑔𝑍)
8278fdmd 6662 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑔𝐿) → dom 𝐺 = 𝑍)
8381, 82sseqtrrd 3973 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑔𝐿) → 𝑔 ⊆ dom 𝐺)
84 funimass4 6887 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐺𝑔 ⊆ dom 𝐺) → ((𝐺𝑔) ⊆ 𝑣 ↔ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
8579, 83, 84syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑔𝐿) → ((𝐺𝑔) ⊆ 𝑣 ↔ ∀𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
8685rexbidva 3151 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣 ↔ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣))
8776, 86anbi12d 632 . . . . . . . . . . . . . . 15 (𝜑 → ((∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∃𝑓𝐿𝑛𝑓 (𝐹𝑛) ∈ 𝑢 ∧ ∃𝑔𝐿𝑛𝑔 (𝐺𝑛) ∈ 𝑣)))
8842, 66, 873bitr4d 311 . . . . . . . . . . . . . 14 (𝜑 → (∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣) ↔ (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
8914, 88imbi12d 344 . . . . . . . . . . . . 13 (𝜑 → ((⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ((𝑆𝑣𝑅𝑢) → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
90 impexp 450 . . . . . . . . . . . . 13 (((𝑆𝑣𝑅𝑢) → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)) ↔ (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
9189, 90bitrdi 287 . . . . . . . . . . . 12 (𝜑 → ((⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
9291ralbidv 3152 . . . . . . . . . . 11 (𝜑 → (∀𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑣𝐾 (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
93 eleq2 2817 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (𝑆𝑥𝑆𝑣))
9493ralrab 3654 . . . . . . . . . . . 12 (∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)) ↔ ∀𝑣𝐾 (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
95 r19.21v 3154 . . . . . . . . . . . 12 (∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)) ↔ (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
9694, 95bitr3i 277 . . . . . . . . . . 11 (∀𝑣𝐾 (𝑆𝑣 → (𝑅𝑢 → (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))) ↔ (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
9792, 96bitrdi 287 . . . . . . . . . 10 (𝜑 → (∀𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
9897ralbidv 3152 . . . . . . . . 9 (𝜑 → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢𝐽 (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
99 eleq2 2817 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑅𝑥𝑅𝑢))
10099ralrab 3654 . . . . . . . . 9 (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ ∀𝑢𝐽 (𝑅𝑢 → ∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
10198, 100bitr4di 289 . . . . . . . 8 (𝜑 → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
102101adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
103 txflf.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
104 toponmax 22811 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
105103, 104syl 17 . . . . . . . . . 10 (𝜑𝑋𝐽)
106 eleq2 2817 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑅𝑥𝑅𝑋))
107106rspcev 3577 . . . . . . . . . . 11 ((𝑋𝐽𝑅𝑋) → ∃𝑥𝐽 𝑅𝑥)
108 rabn0 4340 . . . . . . . . . . 11 ({𝑥𝐽𝑅𝑥} ≠ ∅ ↔ ∃𝑥𝐽 𝑅𝑥)
109107, 108sylibr 234 . . . . . . . . . 10 ((𝑋𝐽𝑅𝑋) → {𝑥𝐽𝑅𝑥} ≠ ∅)
110105, 109sylan 580 . . . . . . . . 9 ((𝜑𝑅𝑋) → {𝑥𝐽𝑅𝑥} ≠ ∅)
111 txflf.k . . . . . . . . . . 11 (𝜑𝐾 ∈ (TopOn‘𝑌))
112 toponmax 22811 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
113111, 112syl 17 . . . . . . . . . 10 (𝜑𝑌𝐾)
114 eleq2 2817 . . . . . . . . . . . 12 (𝑥 = 𝑌 → (𝑆𝑥𝑆𝑌))
115114rspcev 3577 . . . . . . . . . . 11 ((𝑌𝐾𝑆𝑌) → ∃𝑥𝐾 𝑆𝑥)
116 rabn0 4340 . . . . . . . . . . 11 ({𝑥𝐾𝑆𝑥} ≠ ∅ ↔ ∃𝑥𝐾 𝑆𝑥)
117115, 116sylibr 234 . . . . . . . . . 10 ((𝑌𝐾𝑆𝑌) → {𝑥𝐾𝑆𝑥} ≠ ∅)
118113, 117sylan 580 . . . . . . . . 9 ((𝜑𝑆𝑌) → {𝑥𝐾𝑆𝑥} ≠ ∅)
119110, 118anim12dan 619 . . . . . . . 8 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → ({𝑥𝐽𝑅𝑥} ≠ ∅ ∧ {𝑥𝐾𝑆𝑥} ≠ ∅))
120 r19.28zv 4452 . . . . . . . . . 10 ({𝑥𝐾𝑆𝑥} ≠ ∅ → (∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
121120ralbidv 3152 . . . . . . . . 9 ({𝑥𝐾𝑆𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ ∀𝑢 ∈ {𝑥𝐽𝑅𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
122 r19.27zv 4457 . . . . . . . . 9 ({𝑥𝐽𝑅𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
123121, 122sylan9bbr 510 . . . . . . . 8 (({𝑥𝐽𝑅𝑥} ≠ ∅ ∧ {𝑥𝐾𝑆𝑥} ≠ ∅) → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
124119, 123syl 17 . . . . . . 7 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∀𝑣 ∈ {𝑥𝐾𝑆𝑥} (∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
125102, 124bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
12699ralrab 3654 . . . . . . 7 (∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ↔ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢))
12793ralrab 3654 . . . . . . 7 (∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣 ↔ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))
128126, 127anbi12i 628 . . . . . 6 ((∀𝑢 ∈ {𝑥𝐽𝑅𝑥}∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥𝐾𝑆𝑥}∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣) ↔ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))
129125, 128bitrdi 287 . . . . 5 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) → ∃𝐿 (𝐻) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
13011, 129bitrid 283 . . . 4 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧) ↔ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
131130pm5.32da 579 . . 3 (𝜑 → (((𝑅𝑋𝑆𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)) ↔ ((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
132 opelxp 5655 . . . 4 (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ↔ (𝑅𝑋𝑆𝑌))
133132anbi1i 624 . . 3 ((⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)) ↔ ((𝑅𝑋𝑆𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)))
134 an4 656 . . 3 (((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))) ↔ ((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
135131, 133, 1343bitr4g 314 . 2 (𝜑 → ((⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧)) ↔ ((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
136 eqid 2729 . . . . . . . 8 ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)) = ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))
137136txval 23449 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
138103, 111, 137syl2anc 584 . . . . . 6 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
139138oveq1d 7364 . . . . 5 (𝜑 → ((𝐽 ×t 𝐾) fLimf 𝐿) = ((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿))
140139fveq1d 6824 . . . 4 (𝜑 → (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) = (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻))
141140eleq2d 2814 . . 3 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ ⟨𝑅, 𝑆⟩ ∈ (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻)))
142 txtopon 23476 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
143103, 111, 142syl2anc 584 . . . . 5 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
144138, 143eqeltrrd 2829 . . . 4 (𝜑 → (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌)))
14567ffvelcdmda 7018 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑋)
14677ffvelcdmda 7018 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ 𝑌)
147145, 146opelxpd 5658 . . . . 5 ((𝜑𝑛𝑍) → ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑋 × 𝑌))
148147, 46fmptd 7048 . . . 4 (𝜑𝐻:𝑍⟶(𝑋 × 𝑌))
149 eqid 2729 . . . . 5 (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)))
150149flftg 23881 . . . 4 (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐻:𝑍⟶(𝑋 × 𝑌)) → (⟨𝑅, 𝑆⟩ ∈ (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧))))
151144, 23, 148, 150syl3anc 1373 . . 3 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧))))
152141, 151bitrd 279 . 2 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑧 → ∃𝐿 (𝐻) ⊆ 𝑧))))
153 isflf 23878 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐹:𝑍𝑋) → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢))))
154103, 23, 67, 153syl3anc 1373 . . 3 (𝜑 → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢))))
155 isflf 23878 . . . 4 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐺:𝑍𝑌) → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
156111, 23, 77, 155syl3anc 1373 . . 3 (𝜑 → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣))))
157154, 156anbi12d 632 . 2 (𝜑 → ((𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺)) ↔ ((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑓𝐿 (𝐹𝑓) ⊆ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑔𝐿 (𝐺𝑔) ⊆ 𝑣)))))
158135, 152, 1573bitr4d 311 1 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cin 3902  wss 3903  c0 4284  cop 4583  cmpt 5173   × cxp 5617  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  topGenctg 17341  TopOnctopon 22795   ×t ctx 23445  Filcfil 23730   fLimf cflf 23820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-topgen 17347  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-ntr 22905  df-nei 22983  df-tx 23447  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825
This theorem is referenced by:  flfcnp2  23892
  Copyright terms: Public domain W3C validator