Step | Hyp | Ref
| Expression |
1 | | vex 3417 |
. . . . . . . 8
⊢ 𝑢 ∈ V |
2 | | vex 3417 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
3 | 1, 2 | xpex 7223 |
. . . . . . 7
⊢ (𝑢 × 𝑣) ∈ V |
4 | 3 | rgen2w 3134 |
. . . . . 6
⊢
∀𝑢 ∈
𝐽 ∀𝑣 ∈ 𝐾 (𝑢 × 𝑣) ∈ V |
5 | | eqid 2825 |
. . . . . . 7
⊢ (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) = (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) |
6 | | eleq2 2895 |
. . . . . . . 8
⊢ (𝑧 = (𝑢 × 𝑣) → (〈𝑅, 𝑆〉 ∈ 𝑧 ↔ 〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣))) |
7 | | sseq2 3852 |
. . . . . . . . 9
⊢ (𝑧 = (𝑢 × 𝑣) → ((𝐻 “ ℎ) ⊆ 𝑧 ↔ (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣))) |
8 | 7 | rexbidv 3262 |
. . . . . . . 8
⊢ (𝑧 = (𝑢 × 𝑣) → (∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧 ↔ ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣))) |
9 | 6, 8 | imbi12d 336 |
. . . . . . 7
⊢ (𝑧 = (𝑢 × 𝑣) → ((〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧) ↔ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)))) |
10 | 5, 9 | ralrnmpt2 7035 |
. . . . . 6
⊢
(∀𝑢 ∈
𝐽 ∀𝑣 ∈ 𝐾 (𝑢 × 𝑣) ∈ V → (∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧) ↔ ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)))) |
11 | 4, 10 | ax-mp 5 |
. . . . 5
⊢
(∀𝑧 ∈
ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧) ↔ ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣))) |
12 | | opelxp 5378 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ↔ (𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣)) |
13 | | ancom 454 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣) ↔ (𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢)) |
14 | 12, 13 | bitri 267 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ↔ (𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢)) |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ↔ (𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢))) |
16 | | r19.40 3298 |
. . . . . . . . . . . . . . . . 17
⊢
(∃ℎ ∈
𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) → (∃ℎ ∈ 𝐿 ∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∃ℎ ∈ 𝐿 ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
17 | | raleq 3350 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑓 → (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ↔ ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢)) |
18 | 17 | cbvrexv 3384 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃ℎ ∈
𝐿 ∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ↔ ∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢) |
19 | | raleq 3350 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑔 → (∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣 ↔ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
20 | 19 | cbvrexv 3384 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃ℎ ∈
𝐿 ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣 ↔ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) |
21 | 18, 20 | anbi12i 620 |
. . . . . . . . . . . . . . . . 17
⊢
((∃ℎ ∈
𝐿 ∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∃ℎ ∈ 𝐿 ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) ↔ (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
22 | 16, 21 | sylib 210 |
. . . . . . . . . . . . . . . 16
⊢
(∃ℎ ∈
𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) → (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
23 | | reeanv 3317 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑓 ∈
𝐿 ∃𝑔 ∈ 𝐿 (∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) ↔ (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
24 | | txflf.l |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑍)) |
25 | | filin 22028 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿) → (𝑓 ∩ 𝑔) ∈ 𝐿) |
26 | 25 | 3expb 1153 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ (𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿)) → (𝑓 ∩ 𝑔) ∈ 𝐿) |
27 | 24, 26 | sylan 575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿)) → (𝑓 ∩ 𝑔) ∈ 𝐿) |
28 | | inss1 4057 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∩ 𝑔) ⊆ 𝑓 |
29 | | ssralv 3891 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∩ 𝑔) ⊆ 𝑓 → (∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢)) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑛 ∈
𝑓 (𝐹‘𝑛) ∈ 𝑢 → ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢) |
31 | | inss2 4058 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∩ 𝑔) ⊆ 𝑔 |
32 | | ssralv 3891 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 ∩ 𝑔) ⊆ 𝑔 → (∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣)) |
33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑛 ∈
𝑔 (𝐺‘𝑛) ∈ 𝑣 → ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣) |
34 | 30, 33 | anim12i 606 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑛 ∈
𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) → (∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣)) |
35 | | raleq 3350 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = (𝑓 ∩ 𝑔) → (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ↔ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢)) |
36 | | raleq 3350 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = (𝑓 ∩ 𝑔) → (∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣 ↔ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣)) |
37 | 35, 36 | anbi12d 624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = (𝑓 ∩ 𝑔) → ((∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) ↔ (∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣))) |
38 | 37 | rspcev 3526 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 ∩ 𝑔) ∈ 𝐿 ∧ (∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ (𝑓 ∩ 𝑔)(𝐺‘𝑛) ∈ 𝑣)) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
39 | 27, 34, 38 | syl2an 589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿)) ∧ (∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
40 | 39 | ex 403 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑓 ∈ 𝐿 ∧ 𝑔 ∈ 𝐿)) → ((∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
41 | 40 | rexlimdvva 3248 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝐿 (∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
42 | 23, 41 | syl5bir 235 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣) → ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
43 | 22, 42 | impbid2 218 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣) ↔ (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣))) |
44 | | df-ima 5355 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐻 “ ℎ) = ran (𝐻 ↾ ℎ) |
45 | | filelss 22026 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ ℎ ∈ 𝐿) → ℎ ⊆ 𝑍) |
46 | 24, 45 | sylan 575 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → ℎ ⊆ 𝑍) |
47 | | txflf.h |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) |
48 | 47 | reseq1i 5625 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐻 ↾ ℎ) = ((𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ↾ ℎ) |
49 | | resmpt 5686 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ ⊆ 𝑍 → ((𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ↾ ℎ) = (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
50 | 48, 49 | syl5eq 2873 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ ⊆ 𝑍 → (𝐻 ↾ ℎ) = (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
51 | 46, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → (𝐻 ↾ ℎ) = (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
52 | 51 | rneqd 5585 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → ran (𝐻 ↾ ℎ) = ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
53 | 44, 52 | syl5eq 2873 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → (𝐻 “ ℎ) = ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) |
54 | 53 | sseq1d 3857 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → ((𝐻 “ ℎ) ⊆ (𝑢 × 𝑣) ↔ ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣))) |
55 | | opelxp 5378 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑢 × 𝑣) ↔ ((𝐹‘𝑛) ∈ 𝑢 ∧ (𝐺‘𝑛) ∈ 𝑣)) |
56 | 55 | ralbii 3189 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
ℎ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑢 × 𝑣) ↔ ∀𝑛 ∈ ℎ ((𝐹‘𝑛) ∈ 𝑢 ∧ (𝐺‘𝑛) ∈ 𝑣)) |
57 | | eqid 2825 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) |
58 | 57 | fmpt 6629 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑛 ∈
ℎ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑢 × 𝑣) ↔ (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉):ℎ⟶(𝑢 × 𝑣)) |
59 | | opex 5153 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ V |
60 | 59, 57 | fnmpti 6255 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) Fn ℎ |
61 | | df-f 6127 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉):ℎ⟶(𝑢 × 𝑣) ↔ ((𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) Fn ℎ ∧ ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣))) |
62 | 60, 61 | mpbiran 700 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉):ℎ⟶(𝑢 × 𝑣) ↔ ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣)) |
63 | 58, 62 | bitri 267 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
ℎ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑢 × 𝑣) ↔ ran (𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣)) |
64 | | r19.26 3274 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
ℎ ((𝐹‘𝑛) ∈ 𝑢 ∧ (𝐺‘𝑛) ∈ 𝑣) ↔ (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
65 | 56, 63, 64 | 3bitr3i 293 |
. . . . . . . . . . . . . . . . 17
⊢ (ran
(𝑛 ∈ ℎ ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣)) |
66 | 54, 65 | syl6bb 279 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ℎ ∈ 𝐿) → ((𝐻 “ ℎ) ⊆ (𝑢 × 𝑣) ↔ (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
67 | 66 | rexbidva 3259 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣) ↔ ∃ℎ ∈ 𝐿 (∀𝑛 ∈ ℎ (𝐹‘𝑛) ∈ 𝑢 ∧ ∀𝑛 ∈ ℎ (𝐺‘𝑛) ∈ 𝑣))) |
68 | | txflf.f |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
69 | 68 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → 𝐹:𝑍⟶𝑋) |
70 | 69 | ffund 6282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → Fun 𝐹) |
71 | | filelss 22026 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑓 ∈ 𝐿) → 𝑓 ⊆ 𝑍) |
72 | 24, 71 | sylan 575 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → 𝑓 ⊆ 𝑍) |
73 | 69 | fdmd 6287 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → dom 𝐹 = 𝑍) |
74 | 72, 73 | sseqtr4d 3867 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → 𝑓 ⊆ dom 𝐹) |
75 | | funimass4 6494 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ dom 𝐹) → ((𝐹 “ 𝑓) ⊆ 𝑢 ↔ ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢)) |
76 | 70, 74, 75 | syl2anc 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐿) → ((𝐹 “ 𝑓) ⊆ 𝑢 ↔ ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢)) |
77 | 76 | rexbidva 3259 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ↔ ∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢)) |
78 | | txflf.g |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐺:𝑍⟶𝑌) |
79 | 78 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → 𝐺:𝑍⟶𝑌) |
80 | 79 | ffund 6282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → Fun 𝐺) |
81 | | filelss 22026 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ (Fil‘𝑍) ∧ 𝑔 ∈ 𝐿) → 𝑔 ⊆ 𝑍) |
82 | 24, 81 | sylan 575 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → 𝑔 ⊆ 𝑍) |
83 | 79 | fdmd 6287 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → dom 𝐺 = 𝑍) |
84 | 82, 83 | sseqtr4d 3867 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → 𝑔 ⊆ dom 𝐺) |
85 | | funimass4 6494 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
𝐺 ∧ 𝑔 ⊆ dom 𝐺) → ((𝐺 “ 𝑔) ⊆ 𝑣 ↔ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
86 | 80, 84, 85 | syl2anc 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐿) → ((𝐺 “ 𝑔) ⊆ 𝑣 ↔ ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
87 | 86 | rexbidva 3259 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣 ↔ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣)) |
88 | 77, 87 | anbi12d 624 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∃𝑓 ∈ 𝐿 ∀𝑛 ∈ 𝑓 (𝐹‘𝑛) ∈ 𝑢 ∧ ∃𝑔 ∈ 𝐿 ∀𝑛 ∈ 𝑔 (𝐺‘𝑛) ∈ 𝑣))) |
89 | 43, 67, 88 | 3bitr4d 303 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣) ↔ (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
90 | 15, 89 | imbi12d 336 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ((𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢) → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
91 | | impexp 443 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑣 ∧ 𝑅 ∈ 𝑢) → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)) ↔ (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
92 | 90, 91 | syl6bb 279 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
93 | 92 | ralbidv 3195 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
94 | | eleq2 2895 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (𝑆 ∈ 𝑥 ↔ 𝑆 ∈ 𝑣)) |
95 | 94 | ralrab 3591 |
. . . . . . . . . . . 12
⊢
(∀𝑣 ∈
{𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)) ↔ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
96 | | r19.21v 3169 |
. . . . . . . . . . . 12
⊢
(∀𝑣 ∈
{𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)) ↔ (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
97 | 95, 96 | bitr3i 269 |
. . . . . . . . . . 11
⊢
(∀𝑣 ∈
𝐾 (𝑆 ∈ 𝑣 → (𝑅 ∈ 𝑢 → (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) ↔ (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
98 | 93, 97 | syl6bb 279 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
99 | 98 | ralbidv 3195 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
100 | | eleq2 2895 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (𝑅 ∈ 𝑥 ↔ 𝑅 ∈ 𝑢)) |
101 | 100 | ralrab 3591 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
102 | 99, 101 | syl6bbr 281 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
103 | 102 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ ∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
104 | | txflf.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
105 | | toponmax 21101 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
106 | 104, 105 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
107 | | eleq2 2895 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑅 ∈ 𝑥 ↔ 𝑅 ∈ 𝑋)) |
108 | 107 | rspcev 3526 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐽 ∧ 𝑅 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 𝑅 ∈ 𝑥) |
109 | | rabn0 4187 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ 𝐽 𝑅 ∈ 𝑥) |
110 | 108, 109 | sylibr 226 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐽 ∧ 𝑅 ∈ 𝑋) → {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅) |
111 | 106, 110 | sylan 575 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑅 ∈ 𝑋) → {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅) |
112 | | txflf.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
113 | | toponmax 21101 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) |
114 | 112, 113 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ 𝐾) |
115 | | eleq2 2895 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑌 → (𝑆 ∈ 𝑥 ↔ 𝑆 ∈ 𝑌)) |
116 | 115 | rspcev 3526 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ 𝐾 ∧ 𝑆 ∈ 𝑌) → ∃𝑥 ∈ 𝐾 𝑆 ∈ 𝑥) |
117 | | rabn0 4187 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅ ↔ ∃𝑥 ∈ 𝐾 𝑆 ∈ 𝑥) |
118 | 116, 117 | sylibr 226 |
. . . . . . . . . 10
⊢ ((𝑌 ∈ 𝐾 ∧ 𝑆 ∈ 𝑌) → {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅) |
119 | 114, 118 | sylan 575 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑆 ∈ 𝑌) → {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅) |
120 | 111, 119 | anim12dan 612 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → ({𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅ ∧ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅)) |
121 | | r19.28zv 4288 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅ → (∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
122 | 121 | ralbidv 3195 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ ∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
123 | | r19.27zv 4293 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅ → (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
124 | 122, 123 | sylan9bbr 506 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥} ≠ ∅ ∧ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} ≠ ∅) → (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
125 | 120, 124 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥} (∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
126 | 103, 125 | bitrd 271 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢 ∈ {𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
127 | 100 | ralrab 3591 |
. . . . . . 7
⊢
(∀𝑢 ∈
{𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ↔ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)) |
128 | 94 | ralrab 3591 |
. . . . . . 7
⊢
(∀𝑣 ∈
{𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣 ↔ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)) |
129 | 127, 128 | anbi12i 620 |
. . . . . 6
⊢
((∀𝑢 ∈
{𝑥 ∈ 𝐽 ∣ 𝑅 ∈ 𝑥}∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢 ∧ ∀𝑣 ∈ {𝑥 ∈ 𝐾 ∣ 𝑆 ∈ 𝑥}∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣) ↔ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) |
130 | 126, 129 | syl6bb 279 |
. . . . 5
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ (𝑢 × 𝑣)) ↔ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
131 | 11, 130 | syl5bb 275 |
. . . 4
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧) ↔ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
132 | 131 | pm5.32da 574 |
. . 3
⊢ (𝜑 → (((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
133 | | opelxp 5378 |
. . . 4
⊢
(〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ↔ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) |
134 | 133 | anbi1i 617 |
. . 3
⊢
((〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧))) |
135 | | an4 646 |
. . 3
⊢ (((𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)) ∧ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
136 | 132, 134,
135 | 3bitr4g 306 |
. 2
⊢ (𝜑 → ((〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)) ↔ ((𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)) ∧ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
137 | | eqid 2825 |
. . . . . . . 8
⊢ ran
(𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) |
138 | 137 | txval 21738 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)))) |
139 | 104, 112,
138 | syl2anc 579 |
. . . . . 6
⊢ (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)))) |
140 | 139 | oveq1d 6920 |
. . . . 5
⊢ (𝜑 → ((𝐽 ×t 𝐾) fLimf 𝐿) = ((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)) |
141 | 140 | fveq1d 6435 |
. . . 4
⊢ (𝜑 → (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) = (((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻)) |
142 | 141 | eleq2d 2892 |
. . 3
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ 〈𝑅, 𝑆〉 ∈ (((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻))) |
143 | | txtopon 21765 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
144 | 104, 112,
143 | syl2anc 579 |
. . . . 5
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
145 | 139, 144 | eqeltrrd 2907 |
. . . 4
⊢ (𝜑 → (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌))) |
146 | 68 | ffvelrnda 6608 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑋) |
147 | 78 | ffvelrnda 6608 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ 𝑌) |
148 | | opelxpi 5379 |
. . . . . 6
⊢ (((𝐹‘𝑛) ∈ 𝑋 ∧ (𝐺‘𝑛) ∈ 𝑌) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) |
149 | 146, 147,
148 | syl2anc 579 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) |
150 | 149, 47 | fmptd 6633 |
. . . 4
⊢ (𝜑 → 𝐻:𝑍⟶(𝑋 × 𝑌)) |
151 | | eqid 2825 |
. . . . 5
⊢
(topGen‘ran (𝑢
∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) |
152 | 151 | flftg 22170 |
. . . 4
⊢
(((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐻:𝑍⟶(𝑋 × 𝑌)) → (〈𝑅, 𝑆〉 ∈ (((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)))) |
153 | 145, 24, 150, 152 | syl3anc 1494 |
. . 3
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) fLimf 𝐿)‘𝐻) ↔ (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)))) |
154 | 142, 153 | bitrd 271 |
. 2
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑧 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑧 → ∃ℎ ∈ 𝐿 (𝐻 “ ℎ) ⊆ 𝑧)))) |
155 | | isflf 22167 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐹:𝑍⟶𝑋) → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)))) |
156 | 104, 24, 68, 155 | syl3anc 1494 |
. . 3
⊢ (𝜑 → (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)))) |
157 | | isflf 22167 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ 𝐺:𝑍⟶𝑌) → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
158 | 112, 24, 78, 157 | syl3anc 1494 |
. . 3
⊢ (𝜑 → (𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺) ↔ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣)))) |
159 | 156, 158 | anbi12d 624 |
. 2
⊢ (𝜑 → ((𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺)) ↔ ((𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑓 ∈ 𝐿 (𝐹 “ 𝑓) ⊆ 𝑢)) ∧ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑔 ∈ 𝐿 (𝐺 “ 𝑔) ⊆ 𝑣))))) |
160 | 136, 154,
159 | 3bitr4d 303 |
1
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘𝐻) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘𝐺)))) |