Step | Hyp | Ref
| Expression |
1 | | simprrr 780 |
. . . . . . . . . . 11
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )) |
2 | | simplll 773 |
. . . . . . . . . . . 12
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β πΆ β (βMetβπ)) |
3 | | simplr 767 |
. . . . . . . . . . . 12
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β π₯ β π) |
4 | | simprlr 778 |
. . . . . . . . . . . . 13
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β π β β+) |
5 | 4 | rpxrd 13013 |
. . . . . . . . . . . 12
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β π β β*) |
6 | | simprll 777 |
. . . . . . . . . . . . 13
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β π β β+) |
7 | 6 | rpxrd 13013 |
. . . . . . . . . . . 12
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β π β β*) |
8 | | simprrl 779 |
. . . . . . . . . . . 12
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β π β€ π) |
9 | | ssbl 23920 |
. . . . . . . . . . . 12
β’ (((πΆ β (βMetβπ) β§ π₯ β π) β§ (π β β* β§ π β β*)
β§ π β€ π) β (π₯(ballβπΆ)π ) β (π₯(ballβπΆ)π)) |
10 | 2, 3, 5, 7, 8, 9 | syl221anc 1381 |
. . . . . . . . . . 11
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β (π₯(ballβπΆ)π ) β (π₯(ballβπΆ)π)) |
11 | 1, 10 | eqsstrrd 4020 |
. . . . . . . . . 10
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)) |
12 | | simpllr 774 |
. . . . . . . . . . . 12
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β π· β (βMetβπ)) |
13 | | ssbl 23920 |
. . . . . . . . . . . 12
β’ (((π· β (βMetβπ) β§ π₯ β π) β§ (π β β* β§ π β β*)
β§ π β€ π) β (π₯(ballβπ·)π ) β (π₯(ballβπ·)π)) |
14 | 12, 3, 5, 7, 8, 13 | syl221anc 1381 |
. . . . . . . . . . 11
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β (π₯(ballβπ·)π ) β (π₯(ballβπ·)π)) |
15 | 1, 14 | eqsstrd 4019 |
. . . . . . . . . 10
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)) |
16 | 11, 15 | jca 512 |
. . . . . . . . 9
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ ((π β β+ β§ π β β+)
β§ (π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )))) β ((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π))) |
17 | 16 | expr 457 |
. . . . . . . 8
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ (π β β+ β§ π β β+))
β ((π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )) β ((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)))) |
18 | 17 | anassrs 468 |
. . . . . . 7
β’
(((((πΆ β
(βMetβπ) β§
π· β
(βMetβπ)) β§
π₯ β π) β§ π β β+) β§ π β β+)
β ((π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )) β ((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)))) |
19 | 18 | reximdva 3168 |
. . . . . 6
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ π β β+) β
(βπ β
β+ (π β€
π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )) β βπ β β+ ((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)))) |
20 | | r19.40 3119 |
. . . . . 6
β’
(βπ β
β+ ((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)) β (βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π))) |
21 | 19, 20 | syl6 35 |
. . . . 5
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ π β β+) β
(βπ β
β+ (π β€
π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )) β (βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)))) |
22 | 21 | ralimdva 3167 |
. . . 4
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ β β+ βπ β β+
(π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )) β βπ β β+ (βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)))) |
23 | | r19.26 3111 |
. . . 4
β’
(βπ β
β+ (βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ (π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)) β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ βπ β β+
(π₯(ballβπΆ)π ) β (π₯(ballβπ·)π))) |
24 | 22, 23 | imbitrdi 250 |
. . 3
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ β β+ βπ β β+
(π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )) β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ βπ β β+
(π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)))) |
25 | 24 | ralimdva 3167 |
. 2
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (βπ₯ β π βπ β β+ βπ β β+
(π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )) β βπ₯ β π (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ βπ β β+
(π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)))) |
26 | | metequiv.3 |
. . 3
β’ π½ = (MetOpenβπΆ) |
27 | | metequiv.4 |
. . 3
β’ πΎ = (MetOpenβπ·) |
28 | 26, 27 | metequiv 24009 |
. 2
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ = πΎ β βπ₯ β π (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ βπ β β+
(π₯(ballβπΆ)π ) β (π₯(ballβπ·)π)))) |
29 | 25, 28 | sylibrd 258 |
1
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (βπ₯ β π βπ β β+ βπ β β+
(π β€ π β§ (π₯(ballβπΆ)π ) = (π₯(ballβπ·)π )) β π½ = πΎ)) |