| Step | Hyp | Ref
| Expression |
| 1 | | r19.26 3111 |
. . . 4
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 2 | 1 | rexbii 3094 |
. . 3
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ ∃𝑗 ∈ ℤ (∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 3 | | r19.40 3119 |
. . 3
⊢
(∃𝑗 ∈
ℤ (∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 4 | 2, 3 | sylbi 217 |
. 2
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝜑 ∧ 𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 5 | | uzf 12881 |
. . . 4
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
| 6 | | ffn 6736 |
. . . 4
⊢
(ℤ≥:ℤ⟶𝒫 ℤ →
ℤ≥ Fn ℤ) |
| 7 | | raleq 3323 |
. . . . 5
⊢ (𝑥 =
(ℤ≥‘𝑗) → (∀𝑘 ∈ 𝑥 𝜑 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 8 | 7 | rexrn 7107 |
. . . 4
⊢
(ℤ≥ Fn ℤ → (∃𝑥 ∈ ran
ℤ≥∀𝑘 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
| 9 | 5, 6, 8 | mp2b 10 |
. . 3
⊢
(∃𝑥 ∈ ran
ℤ≥∀𝑘 ∈ 𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑) |
| 10 | | raleq 3323 |
. . . . 5
⊢ (𝑦 =
(ℤ≥‘𝑗) → (∀𝑘 ∈ 𝑦 𝜓 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 11 | 10 | rexrn 7107 |
. . . 4
⊢
(ℤ≥ Fn ℤ → (∃𝑦 ∈ ran
ℤ≥∀𝑘 ∈ 𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
| 12 | 5, 6, 11 | mp2b 10 |
. . 3
⊢
(∃𝑦 ∈ ran
ℤ≥∀𝑘 ∈ 𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) |
| 13 | | uzin2 15383 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ran
ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) →
(𝑥 ∩ 𝑦) ∈ ran
ℤ≥) |
| 14 | | inss1 4237 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 |
| 15 | | ssralv 4052 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝑦) ⊆ 𝑥 → (∀𝑘 ∈ 𝑥 𝜑 → ∀𝑘 ∈ (𝑥 ∩ 𝑦)𝜑)) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝑥 𝜑 → ∀𝑘 ∈ (𝑥 ∩ 𝑦)𝜑) |
| 17 | | inss2 4238 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ 𝑦) ⊆ 𝑦 |
| 18 | | ssralv 4052 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝑦) ⊆ 𝑦 → (∀𝑘 ∈ 𝑦 𝜓 → ∀𝑘 ∈ (𝑥 ∩ 𝑦)𝜓)) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝑦 𝜓 → ∀𝑘 ∈ (𝑥 ∩ 𝑦)𝜓) |
| 20 | 16, 19 | anim12i 613 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
𝑥 𝜑 ∧ ∀𝑘 ∈ 𝑦 𝜓) → (∀𝑘 ∈ (𝑥 ∩ 𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥 ∩ 𝑦)𝜓)) |
| 21 | | r19.26 3111 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
(𝑥 ∩ 𝑦)(𝜑 ∧ 𝜓) ↔ (∀𝑘 ∈ (𝑥 ∩ 𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥 ∩ 𝑦)𝜓)) |
| 22 | 20, 21 | sylibr 234 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
𝑥 𝜑 ∧ ∀𝑘 ∈ 𝑦 𝜓) → ∀𝑘 ∈ (𝑥 ∩ 𝑦)(𝜑 ∧ 𝜓)) |
| 23 | | raleq 3323 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑥 ∩ 𝑦) → (∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓) ↔ ∀𝑘 ∈ (𝑥 ∩ 𝑦)(𝜑 ∧ 𝜓))) |
| 24 | 23 | rspcev 3622 |
. . . . . . . . 9
⊢ (((𝑥 ∩ 𝑦) ∈ ran ℤ≥ ∧
∀𝑘 ∈ (𝑥 ∩ 𝑦)(𝜑 ∧ 𝜓)) → ∃𝑧 ∈ ran
ℤ≥∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓)) |
| 25 | 13, 22, 24 | syl2an 596 |
. . . . . . . 8
⊢ (((𝑥 ∈ ran
ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) ∧
(∀𝑘 ∈ 𝑥 𝜑 ∧ ∀𝑘 ∈ 𝑦 𝜓)) → ∃𝑧 ∈ ran
ℤ≥∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓)) |
| 26 | 25 | an4s 660 |
. . . . . . 7
⊢ (((𝑥 ∈ ran
ℤ≥ ∧ ∀𝑘 ∈ 𝑥 𝜑) ∧ (𝑦 ∈ ran ℤ≥ ∧
∀𝑘 ∈ 𝑦 𝜓)) → ∃𝑧 ∈ ran
ℤ≥∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓)) |
| 27 | 26 | rexlimdvaa 3156 |
. . . . . 6
⊢ ((𝑥 ∈ ran
ℤ≥ ∧ ∀𝑘 ∈ 𝑥 𝜑) → (∃𝑦 ∈ ran
ℤ≥∀𝑘 ∈ 𝑦 𝜓 → ∃𝑧 ∈ ran
ℤ≥∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓))) |
| 28 | 27 | rexlimiva 3147 |
. . . . 5
⊢
(∃𝑥 ∈ ran
ℤ≥∀𝑘 ∈ 𝑥 𝜑 → (∃𝑦 ∈ ran
ℤ≥∀𝑘 ∈ 𝑦 𝜓 → ∃𝑧 ∈ ran
ℤ≥∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓))) |
| 29 | 28 | imp 406 |
. . . 4
⊢
((∃𝑥 ∈
ran ℤ≥∀𝑘 ∈ 𝑥 𝜑 ∧ ∃𝑦 ∈ ran
ℤ≥∀𝑘 ∈ 𝑦 𝜓) → ∃𝑧 ∈ ran
ℤ≥∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓)) |
| 30 | | raleq 3323 |
. . . . . 6
⊢ (𝑧 =
(ℤ≥‘𝑗) → (∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓) ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
| 31 | 30 | rexrn 7107 |
. . . . 5
⊢
(ℤ≥ Fn ℤ → (∃𝑧 ∈ ran
ℤ≥∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
| 32 | 5, 6, 31 | mp2b 10 |
. . . 4
⊢
(∃𝑧 ∈ ran
ℤ≥∀𝑘 ∈ 𝑧 (𝜑 ∧ 𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| 33 | 29, 32 | sylib 218 |
. . 3
⊢
((∃𝑥 ∈
ran ℤ≥∀𝑘 ∈ 𝑥 𝜑 ∧ ∃𝑦 ∈ ran
ℤ≥∀𝑘 ∈ 𝑦 𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| 34 | 9, 12, 33 | syl2anbr 599 |
. 2
⊢
((∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) |
| 35 | 4, 34 | impbii 209 |
1
⊢
(∃𝑗 ∈
ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |