MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanuz Structured version   Visualization version   GIF version

Theorem rexanuz 14697
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
Assertion
Ref Expression
rexanuz (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
Distinct variable groups:   𝑗,𝑘   𝜑,𝑗   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)

Proof of Theorem rexanuz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 3137 . . . 4 (∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓))
21rexbii 3210 . . 3 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ ∃𝑗 ∈ ℤ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓))
3 r19.40 3299 . . 3 (∃𝑗 ∈ ℤ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
42, 3sylbi 220 . 2 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
5 uzf 12234 . . . 4 :ℤ⟶𝒫 ℤ
6 ffn 6487 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7 raleq 3358 . . . . 5 (𝑥 = (ℤ𝑗) → (∀𝑘𝑥 𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜑))
87rexrn 6830 . . . 4 (ℤ Fn ℤ → (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
95, 6, 8mp2b 10 . . 3 (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)
10 raleq 3358 . . . . 5 (𝑦 = (ℤ𝑗) → (∀𝑘𝑦 𝜓 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜓))
1110rexrn 6830 . . . 4 (ℤ Fn ℤ → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
125, 6, 11mp2b 10 . . 3 (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓)
13 uzin2 14696 . . . . . . . . 9 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (𝑥𝑦) ∈ ran ℤ)
14 inss1 4155 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑥
15 ssralv 3981 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝑥 → (∀𝑘𝑥 𝜑 → ∀𝑘 ∈ (𝑥𝑦)𝜑))
1614, 15ax-mp 5 . . . . . . . . . . 11 (∀𝑘𝑥 𝜑 → ∀𝑘 ∈ (𝑥𝑦)𝜑)
17 inss2 4156 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑦
18 ssralv 3981 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝑦 → (∀𝑘𝑦 𝜓 → ∀𝑘 ∈ (𝑥𝑦)𝜓))
1917, 18ax-mp 5 . . . . . . . . . . 11 (∀𝑘𝑦 𝜓 → ∀𝑘 ∈ (𝑥𝑦)𝜓)
2016, 19anim12i 615 . . . . . . . . . 10 ((∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓) → (∀𝑘 ∈ (𝑥𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥𝑦)𝜓))
21 r19.26 3137 . . . . . . . . . 10 (∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓) ↔ (∀𝑘 ∈ (𝑥𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥𝑦)𝜓))
2220, 21sylibr 237 . . . . . . . . 9 ((∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓) → ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓))
23 raleq 3358 . . . . . . . . . 10 (𝑧 = (𝑥𝑦) → (∀𝑘𝑧 (𝜑𝜓) ↔ ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓)))
2423rspcev 3571 . . . . . . . . 9 (((𝑥𝑦) ∈ ran ℤ ∧ ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2513, 22, 24syl2an 598 . . . . . . . 8 (((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) ∧ (∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2625an4s 659 . . . . . . 7 (((𝑥 ∈ ran ℤ ∧ ∀𝑘𝑥 𝜑) ∧ (𝑦 ∈ ran ℤ ∧ ∀𝑘𝑦 𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2726rexlimdvaa 3244 . . . . . 6 ((𝑥 ∈ ran ℤ ∧ ∀𝑘𝑥 𝜑) → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓)))
2827rexlimiva 3240 . . . . 5 (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓)))
2928imp 410 . . . 4 ((∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ∧ ∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
30 raleq 3358 . . . . . 6 (𝑧 = (ℤ𝑗) → (∀𝑘𝑧 (𝜑𝜓) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
3130rexrn 6830 . . . . 5 (ℤ Fn ℤ → (∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
325, 6, 31mp2b 10 . . . 4 (∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
3329, 32sylib 221 . . 3 ((∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ∧ ∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
349, 12, 33syl2anbr 601 . 2 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
354, 34impbii 212 1 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wral 3106  wrex 3107  cin 3880  wss 3881  𝒫 cpw 4497  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-z 11970  df-uz 12232
This theorem is referenced by:  rexfiuz  14699  rexuz3  14700  rexanuz2  14701
  Copyright terms: Public domain W3C validator