|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > r19.30 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.30 1881. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 5-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| r19.30 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.53 852 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → ∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓)) | 
| 3 | rexnal 3100 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 4 | 3 | biimpri 228 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝜑) | 
| 5 | rexim 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 6 | 2, 4, 5 | syl2im 40 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (¬ ∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | 
| 7 | 6 | orrd 864 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 ∀wral 3061 ∃wrex 3070 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-ral 3062 df-rex 3071 | 
| This theorem is referenced by: disjunsn 32607 esumcvg 34087 | 
| Copyright terms: Public domain | W3C validator |