MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.30 Structured version   Visualization version   GIF version

Theorem r19.30 3126
Description: Restricted quantifier version of 19.30 1880. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 5-Nov-2024.)
Assertion
Ref Expression
r19.30 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))

Proof of Theorem r19.30
StepHypRef Expression
1 pm2.53 850 . . . 4 ((𝜑𝜓) → (¬ 𝜑𝜓))
21ralimi 3089 . . 3 (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴𝜑𝜓))
3 rexnal 3106 . . . 4 (∃𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴 𝜑)
43biimpri 228 . . 3 (¬ ∀𝑥𝐴 𝜑 → ∃𝑥𝐴 ¬ 𝜑)
5 rexim 3093 . . 3 (∀𝑥𝐴𝜑𝜓) → (∃𝑥𝐴 ¬ 𝜑 → ∃𝑥𝐴 𝜓))
62, 4, 5syl2im 40 . 2 (∀𝑥𝐴 (𝜑𝜓) → (¬ ∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
76orrd 862 1 (∀𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-ral 3068  df-rex 3077
This theorem is referenced by:  disjunsn  32616  esumcvg  34050
  Copyright terms: Public domain W3C validator