| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.30 | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.30 1881. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 5-Nov-2024.) |
| Ref | Expression |
|---|---|
| r19.30 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.53 851 | . . . 4 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 2 | 1 | ralimi 3073 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → ∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓)) |
| 3 | rexnal 3089 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
| 4 | 3 | biimpri 228 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
| 5 | rexim 3077 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (¬ 𝜑 → 𝜓) → (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 6 | 2, 4, 5 | syl2im 40 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (¬ ∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| 7 | 6 | orrd 863 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 ∀wral 3051 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: disjunsn 32575 esumcvg 34117 |
| Copyright terms: Public domain | W3C validator |