| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | tru 1543 | . . 3
⊢
⊤ | 
| 2 |  | 0fi 9083 | . . . . . 6
⊢ ∅
∈ Fin | 
| 3 |  | 0ex 5306 | . . . . . . . 8
⊢ ∅
∈ V | 
| 4 |  | mzpconst 42751 | . . . . . . . 8
⊢ ((∅
∈ V ∧ 𝑓 ∈
ℤ) → ((ℤ ↑m ∅) × {𝑓}) ∈
(mzPoly‘∅)) | 
| 5 | 3, 4 | mpan 690 | . . . . . . 7
⊢ (𝑓 ∈ ℤ → ((ℤ
↑m ∅) × {𝑓}) ∈
(mzPoly‘∅)) | 
| 6 |  | 0ss 4399 | . . . . . . . 8
⊢ ∅
⊆ 𝐵 | 
| 7 | 6 | a1i 11 | . . . . . . 7
⊢ (𝑓 ∈ ℤ → ∅
⊆ 𝐵) | 
| 8 |  | fconstmpt 5746 | . . . . . . . 8
⊢ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ 𝑓) | 
| 9 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ ℤ ∧ 𝑑 ∈ (ℤ
↑m 𝐵))
→ 𝑑 ∈ (ℤ
↑m 𝐵)) | 
| 10 |  | elmapssres 8908 | . . . . . . . . . . 11
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵) ∧
∅ ⊆ 𝐵) →
(𝑑 ↾ ∅) ∈
(ℤ ↑m ∅)) | 
| 11 | 9, 6, 10 | sylancl 586 | . . . . . . . . . 10
⊢ ((𝑓 ∈ ℤ ∧ 𝑑 ∈ (ℤ
↑m 𝐵))
→ (𝑑 ↾ ∅)
∈ (ℤ ↑m ∅)) | 
| 12 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑓 ∈ V | 
| 13 | 12 | fvconst2 7225 | . . . . . . . . . 10
⊢ ((𝑑 ↾ ∅) ∈
(ℤ ↑m ∅) → (((ℤ ↑m
∅) × {𝑓})‘(𝑑 ↾ ∅)) = 𝑓) | 
| 14 | 11, 13 | syl 17 | . . . . . . . . 9
⊢ ((𝑓 ∈ ℤ ∧ 𝑑 ∈ (ℤ
↑m 𝐵))
→ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅)) = 𝑓) | 
| 15 | 14 | mpteq2dva 5241 | . . . . . . . 8
⊢ (𝑓 ∈ ℤ → (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ 𝑓)) | 
| 16 | 8, 15 | eqtr4id 2795 | . . . . . . 7
⊢ (𝑓 ∈ ℤ → ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅)))) | 
| 17 |  | fveq1 6904 | . . . . . . . . . . 11
⊢ (𝑏 = ((ℤ ↑m
∅) × {𝑓})
→ (𝑏‘(𝑑 ↾ ∅)) = (((ℤ
↑m ∅) × {𝑓})‘(𝑑 ↾ ∅))) | 
| 18 | 17 | mpteq2dv 5243 | . . . . . . . . . 10
⊢ (𝑏 = ((ℤ ↑m
∅) × {𝑓})
→ (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾ ∅))) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅)))) | 
| 19 | 18 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑏 = ((ℤ ↑m
∅) × {𝑓})
→ (((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))) ↔ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅))))) | 
| 20 | 19 | anbi2d 630 | . . . . . . . 8
⊢ (𝑏 = ((ℤ ↑m
∅) × {𝑓})
→ ((∅ ⊆ 𝐵
∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅)))) ↔ (∅ ⊆
𝐵 ∧ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅)))))) | 
| 21 | 20 | rspcev 3621 | . . . . . . 7
⊢
((((ℤ ↑m ∅) × {𝑓}) ∈ (mzPoly‘∅) ∧
(∅ ⊆ 𝐵 ∧
((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (((ℤ
↑m ∅) × {𝑓})‘(𝑑 ↾ ∅))))) → ∃𝑏 ∈
(mzPoly‘∅)(∅ ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))))) | 
| 22 | 5, 7, 16, 21 | syl12anc 836 | . . . . . 6
⊢ (𝑓 ∈ ℤ →
∃𝑏 ∈
(mzPoly‘∅)(∅ ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))))) | 
| 23 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑎 = ∅ →
(mzPoly‘𝑎) =
(mzPoly‘∅)) | 
| 24 |  | sseq1 4008 | . . . . . . . . 9
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) | 
| 25 |  | reseq2 5991 | . . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑑 ↾ 𝑎) = (𝑑 ↾ ∅)) | 
| 26 | 25 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑎 = ∅ → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ ∅))) | 
| 27 | 26 | mpteq2dv 5243 | . . . . . . . . . 10
⊢ (𝑎 = ∅ → (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅)))) | 
| 28 | 27 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑎 = ∅ → (((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))))) | 
| 29 | 24, 28 | anbi12d 632 | . . . . . . . 8
⊢ (𝑎 = ∅ → ((𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (∅ ⊆ 𝐵 ∧ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾
∅)))))) | 
| 30 | 23, 29 | rexeqbidv 3346 | . . . . . . 7
⊢ (𝑎 = ∅ → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘∅)(∅
⊆ 𝐵 ∧ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾
∅)))))) | 
| 31 | 30 | rspcev 3621 | . . . . . 6
⊢ ((∅
∈ Fin ∧ ∃𝑏
∈ (mzPoly‘∅)(∅ ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))))) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 32 | 2, 22, 31 | sylancr 587 | . . . . 5
⊢ (𝑓 ∈ ℤ →
∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 33 | 32 | adantl 481 | . . . 4
⊢
((⊤ ∧ 𝑓
∈ ℤ) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 34 |  | snfi 9084 | . . . . . 6
⊢ {𝑓} ∈ Fin | 
| 35 |  | vsnex 5433 | . . . . . . . . 9
⊢ {𝑓} ∈ V | 
| 36 |  | vsnid 4662 | . . . . . . . . 9
⊢ 𝑓 ∈ {𝑓} | 
| 37 |  | mzpproj 42753 | . . . . . . . . 9
⊢ (({𝑓} ∈ V ∧ 𝑓 ∈ {𝑓}) → (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) ∈ (mzPoly‘{𝑓})) | 
| 38 | 35, 36, 37 | mp2an 692 | . . . . . . . 8
⊢ (𝑔 ∈ (ℤ
↑m {𝑓})
↦ (𝑔‘𝑓)) ∈ (mzPoly‘{𝑓}) | 
| 39 | 38 | a1i 11 | . . . . . . 7
⊢ (𝑓 ∈ 𝐵 → (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) ∈ (mzPoly‘{𝑓})) | 
| 40 |  | snssi 4807 | . . . . . . 7
⊢ (𝑓 ∈ 𝐵 → {𝑓} ⊆ 𝐵) | 
| 41 |  | fveq1 6904 | . . . . . . . . 9
⊢ (𝑔 = 𝑑 → (𝑔‘𝑓) = (𝑑‘𝑓)) | 
| 42 | 41 | cbvmptv 5254 | . . . . . . . 8
⊢ (𝑔 ∈ (ℤ
↑m 𝐵)
↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑑‘𝑓)) | 
| 43 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → 𝑑 ∈ (ℤ ↑m 𝐵)) | 
| 44 |  | simpl 482 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → 𝑓 ∈ 𝐵) | 
| 45 | 44 | snssd 4808 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → {𝑓} ⊆ 𝐵) | 
| 46 |  | elmapssres 8908 | . . . . . . . . . . . 12
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵) ∧
{𝑓} ⊆ 𝐵) → (𝑑 ↾ {𝑓}) ∈ (ℤ ↑m {𝑓})) | 
| 47 | 43, 45, 46 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → (𝑑 ↾ {𝑓}) ∈ (ℤ ↑m {𝑓})) | 
| 48 |  | fveq1 6904 | . . . . . . . . . . . 12
⊢ (𝑔 = (𝑑 ↾ {𝑓}) → (𝑔‘𝑓) = ((𝑑 ↾ {𝑓})‘𝑓)) | 
| 49 |  | eqid 2736 | . . . . . . . . . . . 12
⊢ (𝑔 ∈ (ℤ
↑m {𝑓})
↦ (𝑔‘𝑓)) = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) | 
| 50 |  | fvex 6918 | . . . . . . . . . . . 12
⊢ ((𝑑 ↾ {𝑓})‘𝑓) ∈ V | 
| 51 | 48, 49, 50 | fvmpt 7015 | . . . . . . . . . . 11
⊢ ((𝑑 ↾ {𝑓}) ∈ (ℤ ↑m {𝑓}) → ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})) = ((𝑑 ↾ {𝑓})‘𝑓)) | 
| 52 | 47, 51 | syl 17 | . . . . . . . . . 10
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})) = ((𝑑 ↾ {𝑓})‘𝑓)) | 
| 53 |  | fvres 6924 | . . . . . . . . . . 11
⊢ (𝑓 ∈ {𝑓} → ((𝑑 ↾ {𝑓})‘𝑓) = (𝑑‘𝑓)) | 
| 54 | 36, 53 | ax-mp 5 | . . . . . . . . . 10
⊢ ((𝑑 ↾ {𝑓})‘𝑓) = (𝑑‘𝑓) | 
| 55 | 52, 54 | eqtr2di 2793 | . . . . . . . . 9
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → (𝑑‘𝑓) = ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓}))) | 
| 56 | 55 | mpteq2dva 5241 | . . . . . . . 8
⊢ (𝑓 ∈ 𝐵 → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑑‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})))) | 
| 57 | 42, 56 | eqtrid 2788 | . . . . . . 7
⊢ (𝑓 ∈ 𝐵 → (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})))) | 
| 58 |  | fveq1 6904 | . . . . . . . . . . 11
⊢ (𝑏 = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) → (𝑏‘(𝑑 ↾ {𝑓})) = ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓}))) | 
| 59 | 58 | mpteq2dv 5243 | . . . . . . . . . 10
⊢ (𝑏 = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})))) | 
| 60 | 59 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑏 = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) → ((𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))) ↔ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓}))))) | 
| 61 | 60 | anbi2d 630 | . . . . . . . 8
⊢ (𝑏 = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) → (({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓})))) ↔ ({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})))))) | 
| 62 | 61 | rspcev 3621 | . . . . . . 7
⊢ (((𝑔 ∈ (ℤ
↑m {𝑓})
↦ (𝑔‘𝑓)) ∈ (mzPoly‘{𝑓}) ∧ ({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓}))))) → ∃𝑏 ∈ (mzPoly‘{𝑓})({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))))) | 
| 63 | 39, 40, 57, 62 | syl12anc 836 | . . . . . 6
⊢ (𝑓 ∈ 𝐵 → ∃𝑏 ∈ (mzPoly‘{𝑓})({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))))) | 
| 64 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑎 = {𝑓} → (mzPoly‘𝑎) = (mzPoly‘{𝑓})) | 
| 65 |  | sseq1 4008 | . . . . . . . . 9
⊢ (𝑎 = {𝑓} → (𝑎 ⊆ 𝐵 ↔ {𝑓} ⊆ 𝐵)) | 
| 66 |  | reseq2 5991 | . . . . . . . . . . . 12
⊢ (𝑎 = {𝑓} → (𝑑 ↾ 𝑎) = (𝑑 ↾ {𝑓})) | 
| 67 | 66 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑎 = {𝑓} → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ {𝑓}))) | 
| 68 | 67 | mpteq2dv 5243 | . . . . . . . . . 10
⊢ (𝑎 = {𝑓} → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓})))) | 
| 69 | 68 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑎 = {𝑓} → ((𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))))) | 
| 70 | 65, 69 | anbi12d 632 | . . . . . . . 8
⊢ (𝑎 = {𝑓} → ((𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓})))))) | 
| 71 | 64, 70 | rexeqbidv 3346 | . . . . . . 7
⊢ (𝑎 = {𝑓} → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘{𝑓})({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓})))))) | 
| 72 | 71 | rspcev 3621 | . . . . . 6
⊢ (({𝑓} ∈ Fin ∧ ∃𝑏 ∈ (mzPoly‘{𝑓})({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))))) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 73 | 34, 63, 72 | sylancr 587 | . . . . 5
⊢ (𝑓 ∈ 𝐵 → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 74 | 73 | adantl 481 | . . . 4
⊢
((⊤ ∧ 𝑓
∈ 𝐵) →
∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 75 |  | simplll 774 | . . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ℎ ∈ Fin) | 
| 76 |  | simprll 778 | . . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑗 ∈ Fin) | 
| 77 |  | unfi 9212 | . . . . . . . . . . . . . . . . . 18
⊢ ((ℎ ∈ Fin ∧ 𝑗 ∈ Fin) → (ℎ ∪ 𝑗) ∈ Fin) | 
| 78 | 75, 76, 77 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (ℎ ∪ 𝑗) ∈ Fin) | 
| 79 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ℎ ∈ V | 
| 80 |  | vex 3483 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑗 ∈ V | 
| 81 | 79, 80 | unex 7765 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ ∪ 𝑗) ∈ V | 
| 82 | 81 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (ℎ ∪ 𝑗) ∈ V) | 
| 83 |  | ssun1 4177 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ℎ ⊆ (ℎ ∪ 𝑗) | 
| 84 | 83 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ℎ ⊆ (ℎ ∪ 𝑗)) | 
| 85 |  | simpllr 775 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑖 ∈ (mzPoly‘ℎ)) | 
| 86 |  | mzpresrename 42766 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((ℎ ∪ 𝑗) ∈ V ∧ ℎ ⊆ (ℎ ∪ 𝑗) ∧ 𝑖 ∈ (mzPoly‘ℎ)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑖‘(𝑙 ↾ ℎ))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) | 
| 87 | 82, 84, 85, 86 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑖‘(𝑙 ↾ ℎ))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) | 
| 88 |  | ssun2 4178 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑗 ⊆ (ℎ ∪ 𝑗) | 
| 89 | 88 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑗 ⊆ (ℎ ∪ 𝑗)) | 
| 90 |  | simprlr 779 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑘 ∈ (mzPoly‘𝑗)) | 
| 91 |  | mzpresrename 42766 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((ℎ ∪ 𝑗) ∈ V ∧ 𝑗 ⊆ (ℎ ∪ 𝑗) ∧ 𝑘 ∈ (mzPoly‘𝑗)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑘‘(𝑙 ↾ 𝑗))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) | 
| 92 | 82, 89, 90, 91 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑘‘(𝑙 ↾ 𝑗))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) | 
| 93 |  | mzpaddmpt 42757 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ (𝑖‘(𝑙 ↾ ℎ))) ∈ (mzPoly‘(ℎ ∪ 𝑗)) ∧ (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑘‘(𝑙 ↾ 𝑗))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) | 
| 94 | 87, 92, 93 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) | 
| 95 |  | simplr 768 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ℎ ⊆ 𝐵) | 
| 96 |  | simprr 772 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑗 ⊆ 𝐵) | 
| 97 | 95, 96 | unssd 4191 | . . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (ℎ ∪ 𝑗) ⊆ 𝐵) | 
| 98 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (ℤ
↑m 𝐵)
∈ V | 
| 99 | 98 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (ℤ ↑m 𝐵) ∈ V) | 
| 100 |  | mzpcompact2lem.i | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐵 ∈ V | 
| 101 | 100 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝐵 ∈ V) | 
| 102 |  | mzpresrename 42766 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐵 ∈ V ∧ ℎ ⊆ 𝐵 ∧ 𝑖 ∈ (mzPoly‘ℎ)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∈ (mzPoly‘𝐵)) | 
| 103 | 101, 95, 85, 102 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∈ (mzPoly‘𝐵)) | 
| 104 |  | mzpf 42752 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑖‘(𝑑 ↾ ℎ))) ∈ (mzPoly‘𝐵) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))):(ℤ ↑m 𝐵)⟶ℤ) | 
| 105 |  | ffn 6735 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑖‘(𝑑 ↾ ℎ))):(ℤ ↑m 𝐵)⟶ℤ → (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑖‘(𝑑 ↾ ℎ))) Fn (ℤ ↑m 𝐵)) | 
| 106 | 103, 104,
105 | 3syl 18 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) Fn (ℤ ↑m 𝐵)) | 
| 107 |  | mzpresrename 42766 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐵 ∈ V ∧ 𝑗 ⊆ 𝐵 ∧ 𝑘 ∈ (mzPoly‘𝑗)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) ∈ (mzPoly‘𝐵)) | 
| 108 | 101, 96, 90, 107 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) ∈ (mzPoly‘𝐵)) | 
| 109 |  | mzpf 42752 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗))) ∈ (mzPoly‘𝐵) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))):(ℤ ↑m 𝐵)⟶ℤ) | 
| 110 |  | ffn 6735 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗))):(ℤ ↑m 𝐵)⟶ℤ → (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗))) Fn (ℤ ↑m 𝐵)) | 
| 111 | 108, 109,
110 | 3syl 18 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) Fn (ℤ ↑m 𝐵)) | 
| 112 |  | ofmpteq 7721 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((ℤ ↑m 𝐵) ∈ V ∧ (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) Fn (ℤ ↑m 𝐵) ∧ (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) Fn (ℤ ↑m 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗))))) | 
| 113 | 99, 106, 111, 112 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗))))) | 
| 114 |  | elmapi 8890 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 ∈ (ℤ
↑m 𝐵)
→ 𝑑:𝐵⟶ℤ) | 
| 115 |  | fssres 6773 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑑:𝐵⟶ℤ ∧ (ℎ ∪ 𝑗) ⊆ 𝐵) → (𝑑 ↾ (ℎ ∪ 𝑗)):(ℎ ∪ 𝑗)⟶ℤ) | 
| 116 | 114, 97, 115 | syl2anr 597 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → (𝑑 ↾ (ℎ ∪ 𝑗)):(ℎ ∪ 𝑗)⟶ℤ) | 
| 117 |  | zex 12624 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℤ
∈ V | 
| 118 | 117, 81 | elmap 8912 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↔ (𝑑 ↾ (ℎ ∪ 𝑗)):(ℎ ∪ 𝑗)⟶ℤ) | 
| 119 | 116, 118 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → (𝑑 ↾ (ℎ ∪ 𝑗)) ∈ (ℤ ↑m (ℎ ∪ 𝑗))) | 
| 120 |  | reseq1 5990 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → (𝑙 ↾ ℎ) = ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) | 
| 121 | 120 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → (𝑖‘(𝑙 ↾ ℎ)) = (𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ))) | 
| 122 |  | reseq1 5990 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → (𝑙 ↾ 𝑗) = ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)) | 
| 123 | 122 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → (𝑘‘(𝑙 ↾ 𝑗)) = (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) | 
| 124 | 121, 123 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) | 
| 125 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) | 
| 126 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) ∈ V | 
| 127 | 124, 125,
126 | fvmpt 7015 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ∈ (ℤ ↑m (ℎ ∪ 𝑗)) → ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) | 
| 128 | 119, 127 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) | 
| 129 |  | resabs1 6023 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ ⊆ (ℎ ∪ 𝑗) → ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ) = (𝑑 ↾ ℎ)) | 
| 130 | 83, 129 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ) = (𝑑 ↾ ℎ) | 
| 131 | 130 | fveq2i 6908 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) = (𝑖‘(𝑑 ↾ ℎ)) | 
| 132 |  | resabs1 6023 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ⊆ (ℎ ∪ 𝑗) → ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗) = (𝑑 ↾ 𝑗)) | 
| 133 | 88, 132 | ax-mp 5 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗) = (𝑑 ↾ 𝑗) | 
| 134 | 133 | fveq2i 6908 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)) = (𝑘‘(𝑑 ↾ 𝑗)) | 
| 135 | 131, 134 | oveq12i 7444 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) = ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗))) | 
| 136 | 128, 135 | eqtr2di 2793 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗))) = ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))) | 
| 137 | 136 | mpteq2dva 5241 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) | 
| 138 | 113, 137 | eqtrd 2776 | . . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) | 
| 139 |  | fveq1 6904 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) → (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))) | 
| 140 | 139 | mpteq2dv 5243 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) | 
| 141 | 140 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) → (((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) | 
| 142 | 141 | anbi2d 630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) → (((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) ↔ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) | 
| 143 | 142 | rspcev 3621 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗)) ∧ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) → ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) | 
| 144 | 94, 97, 138, 143 | syl12anc 836 | . . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) | 
| 145 |  | mzpmulmpt 42758 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ (𝑖‘(𝑙 ↾ ℎ))) ∈ (mzPoly‘(ℎ ∪ 𝑗)) ∧ (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑘‘(𝑙 ↾ 𝑗))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) | 
| 146 | 87, 92, 145 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) | 
| 147 |  | ofmpteq 7721 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((ℤ ↑m 𝐵) ∈ V ∧ (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) Fn (ℤ ↑m 𝐵) ∧ (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) Fn (ℤ ↑m 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗))))) | 
| 148 | 99, 106, 111, 147 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗))))) | 
| 149 | 121, 123 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) | 
| 150 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) | 
| 151 |  | ovex 7465 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) ∈ V | 
| 152 | 149, 150,
151 | fvmpt 7015 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ∈ (ℤ ↑m (ℎ ∪ 𝑗)) → ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) | 
| 153 | 119, 152 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) | 
| 154 | 131, 134 | oveq12i 7444 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) = ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗))) | 
| 155 | 153, 154 | eqtr2di 2793 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗))) = ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))) | 
| 156 | 155 | mpteq2dva 5241 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) | 
| 157 | 148, 156 | eqtrd 2776 | . . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) | 
| 158 |  | fveq1 6904 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) → (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))) | 
| 159 | 158 | mpteq2dv 5243 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) | 
| 160 | 159 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) → (((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) | 
| 161 | 160 | anbi2d 630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) → (((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) ↔ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) | 
| 162 | 161 | rspcev 3621 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗)) ∧ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) → ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) | 
| 163 | 146, 97, 157, 162 | syl12anc 836 | . . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) | 
| 164 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (ℎ ∪ 𝑗) → (mzPoly‘𝑎) = (mzPoly‘(ℎ ∪ 𝑗))) | 
| 165 |  | sseq1 4008 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (ℎ ∪ 𝑗) → (𝑎 ⊆ 𝐵 ↔ (ℎ ∪ 𝑗) ⊆ 𝐵)) | 
| 166 |  | reseq2 5991 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = (ℎ ∪ 𝑗) → (𝑑 ↾ 𝑎) = (𝑑 ↾ (ℎ ∪ 𝑗))) | 
| 167 | 166 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = (ℎ ∪ 𝑗) → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) | 
| 168 | 167 | mpteq2dv 5243 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = (ℎ ∪ 𝑗) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) | 
| 169 | 168 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (ℎ ∪ 𝑗) → (((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) | 
| 170 | 165, 169 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (ℎ ∪ 𝑗) → ((𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) | 
| 171 | 164, 170 | rexeqbidv 3346 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (ℎ ∪ 𝑗) → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) | 
| 172 | 168 | eqeq2d 2747 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (ℎ ∪ 𝑗) → (((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) | 
| 173 | 165, 172 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (ℎ ∪ 𝑗) → ((𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) | 
| 174 | 164, 173 | rexeqbidv 3346 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (ℎ ∪ 𝑗) → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) | 
| 175 | 171, 174 | anbi12d 632 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (ℎ ∪ 𝑗) → ((∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) ↔ (∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) ∧ ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))))) | 
| 176 | 175 | rspcev 3621 | . . . . . . . . . . . . . . . . 17
⊢ (((ℎ ∪ 𝑗) ∈ Fin ∧ (∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) ∧ ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 177 | 78, 144, 163, 176 | syl12anc 836 | . . . . . . . . . . . . . . . 16
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 178 | 177 | adantlrr 721 | . . . . . . . . . . . . . . 15
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 179 | 178 | adantrrr 725 | . . . . . . . . . . . . . 14
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 180 |  | simplrr 777 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) | 
| 181 |  | simprrr 781 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) | 
| 182 | 180, 181 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (𝑓 ∘f + 𝑔) = ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) | 
| 183 | 182 | eqeq1d 2738 | . . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 184 | 183 | anbi2d 630 | . . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 185 | 184 | rexbidv 3178 | . . . . . . . . . . . . . . . 16
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 186 | 180, 181 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (𝑓 ∘f · 𝑔) = ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗))))) | 
| 187 | 186 | eqeq1d 2738 | . . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 188 | 187 | anbi2d 630 | . . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 189 | 188 | rexbidv 3178 | . . . . . . . . . . . . . . . 16
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 190 | 185, 189 | anbi12d 632 | . . . . . . . . . . . . . . 15
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) ↔ (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))))) | 
| 191 | 190 | rexbidv 3178 | . . . . . . . . . . . . . 14
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) ↔ ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))))) | 
| 192 | 179, 191 | mpbird 257 | . . . . . . . . . . . . 13
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 193 |  | r19.40 3118 | . . . . . . . . . . . . 13
⊢
(∃𝑎 ∈ Fin
(∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 194 | 192, 193 | syl 17 | . . . . . . . . . . . 12
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 195 | 194 | exp32 420 | . . . . . . . . . . 11
⊢ (((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) → ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) → ((𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))))) | 
| 196 | 195 | rexlimdvv 3211 | . . . . . . . . . 10
⊢ (((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) → (∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))))) | 
| 197 | 196 | ex 412 | . . . . . . . . 9
⊢ ((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) → ((ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) → (∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))))) | 
| 198 | 197 | rexlimivv 3200 | . . . . . . . 8
⊢
(∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) → (∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))))) | 
| 199 | 198 | imp 406 | . . . . . . 7
⊢
((∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) ∧ ∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 200 | 199 | ad2ant2l 746 | . . . . . 6
⊢ (((𝑓:(ℤ ↑m
𝐵)⟶ℤ ∧
∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ (𝑔:(ℤ ↑m 𝐵)⟶ℤ ∧
∃𝑗 ∈ Fin
∃𝑘 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 201 | 200 | 3adant1 1130 | . . . . 5
⊢
((⊤ ∧ (𝑓:(ℤ ↑m 𝐵)⟶ℤ ∧
∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ (𝑔:(ℤ ↑m 𝐵)⟶ℤ ∧
∃𝑗 ∈ Fin
∃𝑘 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 202 | 201 | simpld 494 | . . . 4
⊢
((⊤ ∧ (𝑓:(ℤ ↑m 𝐵)⟶ℤ ∧
∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ (𝑔:(ℤ ↑m 𝐵)⟶ℤ ∧
∃𝑗 ∈ Fin
∃𝑘 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 203 | 201 | simprd 495 | . . . 4
⊢
((⊤ ∧ (𝑓:(ℤ ↑m 𝐵)⟶ℤ ∧
∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ (𝑔:(ℤ ↑m 𝐵)⟶ℤ ∧
∃𝑗 ∈ Fin
∃𝑘 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 204 |  | eqeq1 2740 | . . . . . 6
⊢ (𝑒 = ((ℤ ↑m
𝐵) × {𝑓}) → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 205 | 204 | anbi2d 630 | . . . . 5
⊢ (𝑒 = ((ℤ ↑m
𝐵) × {𝑓}) → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 206 | 205 | 2rexbidv 3221 | . . . 4
⊢ (𝑒 = ((ℤ ↑m
𝐵) × {𝑓}) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 207 |  | eqeq1 2740 | . . . . . 6
⊢ (𝑒 = (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 208 | 207 | anbi2d 630 | . . . . 5
⊢ (𝑒 = (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 209 | 208 | 2rexbidv 3221 | . . . 4
⊢ (𝑒 = (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 210 |  | eqeq1 2740 | . . . . . . 7
⊢ (𝑒 = 𝑓 → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 211 | 210 | anbi2d 630 | . . . . . 6
⊢ (𝑒 = 𝑓 → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 212 | 211 | 2rexbidv 3221 | . . . . 5
⊢ (𝑒 = 𝑓 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 213 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑎 = ℎ → (mzPoly‘𝑎) = (mzPoly‘ℎ)) | 
| 214 |  | sseq1 4008 | . . . . . . . . 9
⊢ (𝑎 = ℎ → (𝑎 ⊆ 𝐵 ↔ ℎ ⊆ 𝐵)) | 
| 215 |  | reseq2 5991 | . . . . . . . . . . . 12
⊢ (𝑎 = ℎ → (𝑑 ↾ 𝑎) = (𝑑 ↾ ℎ)) | 
| 216 | 215 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑎 = ℎ → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ ℎ))) | 
| 217 | 216 | mpteq2dv 5243 | . . . . . . . . . 10
⊢ (𝑎 = ℎ → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))) | 
| 218 | 217 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑎 = ℎ → (𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ))))) | 
| 219 | 214, 218 | anbi12d 632 | . . . . . . . 8
⊢ (𝑎 = ℎ → ((𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))))) | 
| 220 | 213, 219 | rexeqbidv 3346 | . . . . . . 7
⊢ (𝑎 = ℎ → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))))) | 
| 221 |  | fveq1 6904 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑖 → (𝑏‘(𝑑 ↾ ℎ)) = (𝑖‘(𝑑 ↾ ℎ))) | 
| 222 | 221 | mpteq2dv 5243 | . . . . . . . . . 10
⊢ (𝑏 = 𝑖 → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) | 
| 223 | 222 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑏 = 𝑖 → (𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ))) ↔ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) | 
| 224 | 223 | anbi2d 630 | . . . . . . . 8
⊢ (𝑏 = 𝑖 → ((ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))) ↔ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))))) | 
| 225 | 224 | cbvrexvw 3237 | . . . . . . 7
⊢
(∃𝑏 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))) ↔ ∃𝑖 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) | 
| 226 | 220, 225 | bitrdi 287 | . . . . . 6
⊢ (𝑎 = ℎ → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑖 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))))) | 
| 227 | 226 | cbvrexvw 3237 | . . . . 5
⊢
(∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃ℎ ∈ Fin ∃𝑖 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) | 
| 228 | 212, 227 | bitrdi 287 | . . . 4
⊢ (𝑒 = 𝑓 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃ℎ ∈ Fin ∃𝑖 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))))) | 
| 229 |  | eqeq1 2740 | . . . . . . 7
⊢ (𝑒 = 𝑔 → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 230 | 229 | anbi2d 630 | . . . . . 6
⊢ (𝑒 = 𝑔 → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 231 | 230 | 2rexbidv 3221 | . . . . 5
⊢ (𝑒 = 𝑔 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 232 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑎 = 𝑗 → (mzPoly‘𝑎) = (mzPoly‘𝑗)) | 
| 233 |  | sseq1 4008 | . . . . . . . . 9
⊢ (𝑎 = 𝑗 → (𝑎 ⊆ 𝐵 ↔ 𝑗 ⊆ 𝐵)) | 
| 234 |  | reseq2 5991 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑗 → (𝑑 ↾ 𝑎) = (𝑑 ↾ 𝑗)) | 
| 235 | 234 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑗 → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ 𝑗))) | 
| 236 | 235 | mpteq2dv 5243 | . . . . . . . . . 10
⊢ (𝑎 = 𝑗 → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))) | 
| 237 | 236 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑎 = 𝑗 → (𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗))))) | 
| 238 | 233, 237 | anbi12d 632 | . . . . . . . 8
⊢ (𝑎 = 𝑗 → ((𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))))) | 
| 239 | 232, 238 | rexeqbidv 3346 | . . . . . . 7
⊢ (𝑎 = 𝑗 → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))))) | 
| 240 |  | fveq1 6904 | . . . . . . . . . . 11
⊢ (𝑏 = 𝑘 → (𝑏‘(𝑑 ↾ 𝑗)) = (𝑘‘(𝑑 ↾ 𝑗))) | 
| 241 | 240 | mpteq2dv 5243 | . . . . . . . . . 10
⊢ (𝑏 = 𝑘 → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) | 
| 242 | 241 | eqeq2d 2747 | . . . . . . . . 9
⊢ (𝑏 = 𝑘 → (𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗))) ↔ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) | 
| 243 | 242 | anbi2d 630 | . . . . . . . 8
⊢ (𝑏 = 𝑘 → ((𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))) ↔ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) | 
| 244 | 243 | cbvrexvw 3237 | . . . . . . 7
⊢
(∃𝑏 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))) ↔ ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) | 
| 245 | 239, 244 | bitrdi 287 | . . . . . 6
⊢ (𝑎 = 𝑗 → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) | 
| 246 | 245 | cbvrexvw 3237 | . . . . 5
⊢
(∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) | 
| 247 | 231, 246 | bitrdi 287 | . . . 4
⊢ (𝑒 = 𝑔 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) | 
| 248 |  | eqeq1 2740 | . . . . . 6
⊢ (𝑒 = (𝑓 ∘f + 𝑔) → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 249 | 248 | anbi2d 630 | . . . . 5
⊢ (𝑒 = (𝑓 ∘f + 𝑔) → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 250 | 249 | 2rexbidv 3221 | . . . 4
⊢ (𝑒 = (𝑓 ∘f + 𝑔) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 251 |  | eqeq1 2740 | . . . . . 6
⊢ (𝑒 = (𝑓 ∘f · 𝑔) → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 252 | 251 | anbi2d 630 | . . . . 5
⊢ (𝑒 = (𝑓 ∘f · 𝑔) → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 253 | 252 | 2rexbidv 3221 | . . . 4
⊢ (𝑒 = (𝑓 ∘f · 𝑔) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 254 |  | eqeq1 2740 | . . . . . 6
⊢ (𝑒 = 𝐴 → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 255 | 254 | anbi2d 630 | . . . . 5
⊢ (𝑒 = 𝐴 → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 256 | 255 | 2rexbidv 3221 | . . . 4
⊢ (𝑒 = 𝐴 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) | 
| 257 | 33, 74, 202, 203, 206, 209, 228, 247, 250, 253, 256 | mzpindd 42762 | . . 3
⊢
((⊤ ∧ 𝐴
∈ (mzPoly‘𝐵))
→ ∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 258 | 1, 257 | mpan 690 | . 2
⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) | 
| 259 |  | reseq1 5990 | . . . . . . 7
⊢ (𝑑 = 𝑐 → (𝑑 ↾ 𝑎) = (𝑐 ↾ 𝑎)) | 
| 260 | 259 | fveq2d 6909 | . . . . . 6
⊢ (𝑑 = 𝑐 → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑐 ↾ 𝑎))) | 
| 261 | 260 | cbvmptv 5254 | . . . . 5
⊢ (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))) | 
| 262 | 261 | eqeq2i 2749 | . . . 4
⊢ (𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))) | 
| 263 | 262 | anbi2i 623 | . . 3
⊢ ((𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | 
| 264 | 263 | 2rexbii 3128 | . 2
⊢
(∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) | 
| 265 | 258, 264 | sylib 218 | 1
⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |