Step | Hyp | Ref
| Expression |
1 | | tru 1542 |
. . 3
⊢
⊤ |
2 | | 0fin 8753 |
. . . . . 6
⊢ ∅
∈ Fin |
3 | | 0ex 5181 |
. . . . . . . 8
⊢ ∅
∈ V |
4 | | mzpconst 40084 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ 𝑓 ∈
ℤ) → ((ℤ ↑m ∅) × {𝑓}) ∈
(mzPoly‘∅)) |
5 | 3, 4 | mpan 689 |
. . . . . . 7
⊢ (𝑓 ∈ ℤ → ((ℤ
↑m ∅) × {𝑓}) ∈
(mzPoly‘∅)) |
6 | | 0ss 4295 |
. . . . . . . 8
⊢ ∅
⊆ 𝐵 |
7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝑓 ∈ ℤ → ∅
⊆ 𝐵) |
8 | | fconstmpt 5588 |
. . . . . . . 8
⊢ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ 𝑓) |
9 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ ℤ ∧ 𝑑 ∈ (ℤ
↑m 𝐵))
→ 𝑑 ∈ (ℤ
↑m 𝐵)) |
10 | | elmapssres 8462 |
. . . . . . . . . . 11
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵) ∧
∅ ⊆ 𝐵) →
(𝑑 ↾ ∅) ∈
(ℤ ↑m ∅)) |
11 | 9, 6, 10 | sylancl 589 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ ℤ ∧ 𝑑 ∈ (ℤ
↑m 𝐵))
→ (𝑑 ↾ ∅)
∈ (ℤ ↑m ∅)) |
12 | | vex 3413 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
13 | 12 | fvconst2 6963 |
. . . . . . . . . 10
⊢ ((𝑑 ↾ ∅) ∈
(ℤ ↑m ∅) → (((ℤ ↑m
∅) × {𝑓})‘(𝑑 ↾ ∅)) = 𝑓) |
14 | 11, 13 | syl 17 |
. . . . . . . . 9
⊢ ((𝑓 ∈ ℤ ∧ 𝑑 ∈ (ℤ
↑m 𝐵))
→ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅)) = 𝑓) |
15 | 14 | mpteq2dva 5131 |
. . . . . . . 8
⊢ (𝑓 ∈ ℤ → (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ 𝑓)) |
16 | 8, 15 | eqtr4id 2812 |
. . . . . . 7
⊢ (𝑓 ∈ ℤ → ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅)))) |
17 | | fveq1 6662 |
. . . . . . . . . . 11
⊢ (𝑏 = ((ℤ ↑m
∅) × {𝑓})
→ (𝑏‘(𝑑 ↾ ∅)) = (((ℤ
↑m ∅) × {𝑓})‘(𝑑 ↾ ∅))) |
18 | 17 | mpteq2dv 5132 |
. . . . . . . . . 10
⊢ (𝑏 = ((ℤ ↑m
∅) × {𝑓})
→ (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾ ∅))) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅)))) |
19 | 18 | eqeq2d 2769 |
. . . . . . . . 9
⊢ (𝑏 = ((ℤ ↑m
∅) × {𝑓})
→ (((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))) ↔ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅))))) |
20 | 19 | anbi2d 631 |
. . . . . . . 8
⊢ (𝑏 = ((ℤ ↑m
∅) × {𝑓})
→ ((∅ ⊆ 𝐵
∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅)))) ↔ (∅ ⊆
𝐵 ∧ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (((ℤ ↑m ∅) × {𝑓})‘(𝑑 ↾ ∅)))))) |
21 | 20 | rspcev 3543 |
. . . . . . 7
⊢
((((ℤ ↑m ∅) × {𝑓}) ∈ (mzPoly‘∅) ∧
(∅ ⊆ 𝐵 ∧
((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (((ℤ
↑m ∅) × {𝑓})‘(𝑑 ↾ ∅))))) → ∃𝑏 ∈
(mzPoly‘∅)(∅ ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))))) |
22 | 5, 7, 16, 21 | syl12anc 835 |
. . . . . 6
⊢ (𝑓 ∈ ℤ →
∃𝑏 ∈
(mzPoly‘∅)(∅ ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))))) |
23 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑎 = ∅ →
(mzPoly‘𝑎) =
(mzPoly‘∅)) |
24 | | sseq1 3919 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
25 | | reseq2 5823 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∅ → (𝑑 ↾ 𝑎) = (𝑑 ↾ ∅)) |
26 | 25 | fveq2d 6667 |
. . . . . . . . . . 11
⊢ (𝑎 = ∅ → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ ∅))) |
27 | 26 | mpteq2dv 5132 |
. . . . . . . . . 10
⊢ (𝑎 = ∅ → (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅)))) |
28 | 27 | eqeq2d 2769 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → (((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))))) |
29 | 24, 28 | anbi12d 633 |
. . . . . . . 8
⊢ (𝑎 = ∅ → ((𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (∅ ⊆ 𝐵 ∧ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾
∅)))))) |
30 | 23, 29 | rexeqbidv 3320 |
. . . . . . 7
⊢ (𝑎 = ∅ → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘∅)(∅
⊆ 𝐵 ∧ ((ℤ
↑m 𝐵)
× {𝑓}) = (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾
∅)))))) |
31 | 30 | rspcev 3543 |
. . . . . 6
⊢ ((∅
∈ Fin ∧ ∃𝑏
∈ (mzPoly‘∅)(∅ ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ∅))))) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
32 | 2, 22, 31 | sylancr 590 |
. . . . 5
⊢ (𝑓 ∈ ℤ →
∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
33 | 32 | adantl 485 |
. . . 4
⊢
((⊤ ∧ 𝑓
∈ ℤ) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
34 | | snfi 8627 |
. . . . . 6
⊢ {𝑓} ∈ Fin |
35 | | snex 5304 |
. . . . . . . . 9
⊢ {𝑓} ∈ V |
36 | | vsnid 4562 |
. . . . . . . . 9
⊢ 𝑓 ∈ {𝑓} |
37 | | mzpproj 40086 |
. . . . . . . . 9
⊢ (({𝑓} ∈ V ∧ 𝑓 ∈ {𝑓}) → (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) ∈ (mzPoly‘{𝑓})) |
38 | 35, 36, 37 | mp2an 691 |
. . . . . . . 8
⊢ (𝑔 ∈ (ℤ
↑m {𝑓})
↦ (𝑔‘𝑓)) ∈ (mzPoly‘{𝑓}) |
39 | 38 | a1i 11 |
. . . . . . 7
⊢ (𝑓 ∈ 𝐵 → (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) ∈ (mzPoly‘{𝑓})) |
40 | | snssi 4701 |
. . . . . . 7
⊢ (𝑓 ∈ 𝐵 → {𝑓} ⊆ 𝐵) |
41 | | fveq1 6662 |
. . . . . . . . 9
⊢ (𝑔 = 𝑑 → (𝑔‘𝑓) = (𝑑‘𝑓)) |
42 | 41 | cbvmptv 5139 |
. . . . . . . 8
⊢ (𝑔 ∈ (ℤ
↑m 𝐵)
↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑑‘𝑓)) |
43 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → 𝑑 ∈ (ℤ ↑m 𝐵)) |
44 | | simpl 486 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → 𝑓 ∈ 𝐵) |
45 | 44 | snssd 4702 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → {𝑓} ⊆ 𝐵) |
46 | | elmapssres 8462 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵) ∧
{𝑓} ⊆ 𝐵) → (𝑑 ↾ {𝑓}) ∈ (ℤ ↑m {𝑓})) |
47 | 43, 45, 46 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → (𝑑 ↾ {𝑓}) ∈ (ℤ ↑m {𝑓})) |
48 | | fveq1 6662 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑑 ↾ {𝑓}) → (𝑔‘𝑓) = ((𝑑 ↾ {𝑓})‘𝑓)) |
49 | | eqid 2758 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (ℤ
↑m {𝑓})
↦ (𝑔‘𝑓)) = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) |
50 | | fvex 6676 |
. . . . . . . . . . . 12
⊢ ((𝑑 ↾ {𝑓})‘𝑓) ∈ V |
51 | 48, 49, 50 | fvmpt 6764 |
. . . . . . . . . . 11
⊢ ((𝑑 ↾ {𝑓}) ∈ (ℤ ↑m {𝑓}) → ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})) = ((𝑑 ↾ {𝑓})‘𝑓)) |
52 | 47, 51 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})) = ((𝑑 ↾ {𝑓})‘𝑓)) |
53 | | fvres 6682 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ {𝑓} → ((𝑑 ↾ {𝑓})‘𝑓) = (𝑑‘𝑓)) |
54 | 36, 53 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑑 ↾ {𝑓})‘𝑓) = (𝑑‘𝑓) |
55 | 52, 54 | eqtr2di 2810 |
. . . . . . . . 9
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → (𝑑‘𝑓) = ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓}))) |
56 | 55 | mpteq2dva 5131 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐵 → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑑‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})))) |
57 | 42, 56 | syl5eq 2805 |
. . . . . . 7
⊢ (𝑓 ∈ 𝐵 → (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})))) |
58 | | fveq1 6662 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) → (𝑏‘(𝑑 ↾ {𝑓})) = ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓}))) |
59 | 58 | mpteq2dv 5132 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})))) |
60 | 59 | eqeq2d 2769 |
. . . . . . . . 9
⊢ (𝑏 = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) → ((𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))) ↔ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓}))))) |
61 | 60 | anbi2d 631 |
. . . . . . . 8
⊢ (𝑏 = (𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓)) → (({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓})))) ↔ ({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓})))))) |
62 | 61 | rspcev 3543 |
. . . . . . 7
⊢ (((𝑔 ∈ (ℤ
↑m {𝑓})
↦ (𝑔‘𝑓)) ∈ (mzPoly‘{𝑓}) ∧ ({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑔 ∈ (ℤ ↑m {𝑓}) ↦ (𝑔‘𝑓))‘(𝑑 ↾ {𝑓}))))) → ∃𝑏 ∈ (mzPoly‘{𝑓})({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))))) |
63 | 39, 40, 57, 62 | syl12anc 835 |
. . . . . 6
⊢ (𝑓 ∈ 𝐵 → ∃𝑏 ∈ (mzPoly‘{𝑓})({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))))) |
64 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑎 = {𝑓} → (mzPoly‘𝑎) = (mzPoly‘{𝑓})) |
65 | | sseq1 3919 |
. . . . . . . . 9
⊢ (𝑎 = {𝑓} → (𝑎 ⊆ 𝐵 ↔ {𝑓} ⊆ 𝐵)) |
66 | | reseq2 5823 |
. . . . . . . . . . . 12
⊢ (𝑎 = {𝑓} → (𝑑 ↾ 𝑎) = (𝑑 ↾ {𝑓})) |
67 | 66 | fveq2d 6667 |
. . . . . . . . . . 11
⊢ (𝑎 = {𝑓} → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ {𝑓}))) |
68 | 67 | mpteq2dv 5132 |
. . . . . . . . . 10
⊢ (𝑎 = {𝑓} → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓})))) |
69 | 68 | eqeq2d 2769 |
. . . . . . . . 9
⊢ (𝑎 = {𝑓} → ((𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))))) |
70 | 65, 69 | anbi12d 633 |
. . . . . . . 8
⊢ (𝑎 = {𝑓} → ((𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓})))))) |
71 | 64, 70 | rexeqbidv 3320 |
. . . . . . 7
⊢ (𝑎 = {𝑓} → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘{𝑓})({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓})))))) |
72 | 71 | rspcev 3543 |
. . . . . 6
⊢ (({𝑓} ∈ Fin ∧ ∃𝑏 ∈ (mzPoly‘{𝑓})({𝑓} ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ {𝑓}))))) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
73 | 34, 63, 72 | sylancr 590 |
. . . . 5
⊢ (𝑓 ∈ 𝐵 → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
74 | 73 | adantl 485 |
. . . 4
⊢
((⊤ ∧ 𝑓
∈ 𝐵) →
∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
75 | | simplll 774 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ℎ ∈ Fin) |
76 | | simprll 778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑗 ∈ Fin) |
77 | | unfi 8754 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ℎ ∈ Fin ∧ 𝑗 ∈ Fin) → (ℎ ∪ 𝑗) ∈ Fin) |
78 | 75, 76, 77 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (ℎ ∪ 𝑗) ∈ Fin) |
79 | | vex 3413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℎ ∈ V |
80 | | vex 3413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑗 ∈ V |
81 | 79, 80 | unex 7473 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ ∪ 𝑗) ∈ V |
82 | 81 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (ℎ ∪ 𝑗) ∈ V) |
83 | | ssun1 4079 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℎ ⊆ (ℎ ∪ 𝑗) |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ℎ ⊆ (ℎ ∪ 𝑗)) |
85 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑖 ∈ (mzPoly‘ℎ)) |
86 | | mzpresrename 40099 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((ℎ ∪ 𝑗) ∈ V ∧ ℎ ⊆ (ℎ ∪ 𝑗) ∧ 𝑖 ∈ (mzPoly‘ℎ)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑖‘(𝑙 ↾ ℎ))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) |
87 | 82, 84, 85, 86 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑖‘(𝑙 ↾ ℎ))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) |
88 | | ssun2 4080 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑗 ⊆ (ℎ ∪ 𝑗) |
89 | 88 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑗 ⊆ (ℎ ∪ 𝑗)) |
90 | | simprlr 779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑘 ∈ (mzPoly‘𝑗)) |
91 | | mzpresrename 40099 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((ℎ ∪ 𝑗) ∈ V ∧ 𝑗 ⊆ (ℎ ∪ 𝑗) ∧ 𝑘 ∈ (mzPoly‘𝑗)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑘‘(𝑙 ↾ 𝑗))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) |
92 | 82, 89, 90, 91 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑘‘(𝑙 ↾ 𝑗))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) |
93 | | mzpaddmpt 40090 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ (𝑖‘(𝑙 ↾ ℎ))) ∈ (mzPoly‘(ℎ ∪ 𝑗)) ∧ (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑘‘(𝑙 ↾ 𝑗))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) |
94 | 87, 92, 93 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) |
95 | | simplr 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ℎ ⊆ 𝐵) |
96 | | simprr 772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝑗 ⊆ 𝐵) |
97 | 95, 96 | unssd 4093 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (ℎ ∪ 𝑗) ⊆ 𝐵) |
98 | | ovex 7189 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℤ
↑m 𝐵)
∈ V |
99 | 98 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (ℤ ↑m 𝐵) ∈ V) |
100 | | mzpcompact2lem.i |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐵 ∈ V |
101 | 100 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → 𝐵 ∈ V) |
102 | | mzpresrename 40099 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐵 ∈ V ∧ ℎ ⊆ 𝐵 ∧ 𝑖 ∈ (mzPoly‘ℎ)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∈ (mzPoly‘𝐵)) |
103 | 101, 95, 85, 102 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∈ (mzPoly‘𝐵)) |
104 | | mzpf 40085 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑖‘(𝑑 ↾ ℎ))) ∈ (mzPoly‘𝐵) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))):(ℤ ↑m 𝐵)⟶ℤ) |
105 | | ffn 6503 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑖‘(𝑑 ↾ ℎ))):(ℤ ↑m 𝐵)⟶ℤ → (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑖‘(𝑑 ↾ ℎ))) Fn (ℤ ↑m 𝐵)) |
106 | 103, 104,
105 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) Fn (ℤ ↑m 𝐵)) |
107 | | mzpresrename 40099 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐵 ∈ V ∧ 𝑗 ⊆ 𝐵 ∧ 𝑘 ∈ (mzPoly‘𝑗)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) ∈ (mzPoly‘𝐵)) |
108 | 101, 96, 90, 107 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) ∈ (mzPoly‘𝐵)) |
109 | | mzpf 40085 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗))) ∈ (mzPoly‘𝐵) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))):(ℤ ↑m 𝐵)⟶ℤ) |
110 | | ffn 6503 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗))):(ℤ ↑m 𝐵)⟶ℤ → (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗))) Fn (ℤ ↑m 𝐵)) |
111 | 108, 109,
110 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) Fn (ℤ ↑m 𝐵)) |
112 | | ofmpteq 7432 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℤ ↑m 𝐵) ∈ V ∧ (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) Fn (ℤ ↑m 𝐵) ∧ (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) Fn (ℤ ↑m 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗))))) |
113 | 99, 106, 111, 112 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗))))) |
114 | | elmapi 8444 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑑 ∈ (ℤ
↑m 𝐵)
→ 𝑑:𝐵⟶ℤ) |
115 | | fssres 6534 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑑:𝐵⟶ℤ ∧ (ℎ ∪ 𝑗) ⊆ 𝐵) → (𝑑 ↾ (ℎ ∪ 𝑗)):(ℎ ∪ 𝑗)⟶ℤ) |
116 | 114, 97, 115 | syl2anr 599 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → (𝑑 ↾ (ℎ ∪ 𝑗)):(ℎ ∪ 𝑗)⟶ℤ) |
117 | | zex 12042 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℤ
∈ V |
118 | 117, 81 | elmap 8466 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↔ (𝑑 ↾ (ℎ ∪ 𝑗)):(ℎ ∪ 𝑗)⟶ℤ) |
119 | 116, 118 | sylibr 237 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → (𝑑 ↾ (ℎ ∪ 𝑗)) ∈ (ℤ ↑m (ℎ ∪ 𝑗))) |
120 | | reseq1 5822 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → (𝑙 ↾ ℎ) = ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) |
121 | 120 | fveq2d 6667 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → (𝑖‘(𝑙 ↾ ℎ)) = (𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ))) |
122 | | reseq1 5822 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → (𝑙 ↾ 𝑗) = ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)) |
123 | 122 | fveq2d 6667 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → (𝑘‘(𝑙 ↾ 𝑗)) = (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) |
124 | 121, 123 | oveq12d 7174 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) |
125 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) |
126 | | ovex 7189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) ∈ V |
127 | 124, 125,
126 | fvmpt 6764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ∈ (ℤ ↑m (ℎ ∪ 𝑗)) → ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) |
128 | 119, 127 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) |
129 | | resabs1 5858 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ ⊆ (ℎ ∪ 𝑗) → ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ) = (𝑑 ↾ ℎ)) |
130 | 83, 129 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ) = (𝑑 ↾ ℎ) |
131 | 130 | fveq2i 6666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) = (𝑖‘(𝑑 ↾ ℎ)) |
132 | | resabs1 5858 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ⊆ (ℎ ∪ 𝑗) → ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗) = (𝑑 ↾ 𝑗)) |
133 | 88, 132 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗) = (𝑑 ↾ 𝑗) |
134 | 133 | fveq2i 6666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)) = (𝑘‘(𝑑 ↾ 𝑗)) |
135 | 131, 134 | oveq12i 7168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) + (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) = ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗))) |
136 | 128, 135 | eqtr2di 2810 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗))) = ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))) |
137 | 136 | mpteq2dva 5131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) + (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) |
138 | 113, 137 | eqtrd 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) |
139 | | fveq1 6662 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) → (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))) |
140 | 139 | mpteq2dv 5132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) |
141 | 140 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) → (((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) |
142 | 141 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) → (((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) ↔ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) |
143 | 142 | rspcev 3543 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗)) ∧ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) + (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) → ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) |
144 | 94, 97, 138, 143 | syl12anc 835 |
. . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) |
145 | | mzpmulmpt 40091 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ (𝑖‘(𝑙 ↾ ℎ))) ∈ (mzPoly‘(ℎ ∪ 𝑗)) ∧ (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ (𝑘‘(𝑙 ↾ 𝑗))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) |
146 | 87, 92, 145 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗))) |
147 | | ofmpteq 7432 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℤ ↑m 𝐵) ∈ V ∧ (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) Fn (ℤ ↑m 𝐵) ∧ (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))) Fn (ℤ ↑m 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗))))) |
148 | 99, 106, 111, 147 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗))))) |
149 | 121, 123 | oveq12d 7174 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 = (𝑑 ↾ (ℎ ∪ 𝑗)) → ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) |
150 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) |
151 | | ovex 7189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) ∈ V |
152 | 149, 150,
151 | fvmpt 6764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑑 ↾ (ℎ ∪ 𝑗)) ∈ (ℤ ↑m (ℎ ∪ 𝑗)) → ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) |
153 | 119, 152 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗)))) |
154 | 131, 134 | oveq12i 7168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ ℎ)) · (𝑘‘((𝑑 ↾ (ℎ ∪ 𝑗)) ↾ 𝑗))) = ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗))) |
155 | 153, 154 | eqtr2di 2810 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((ℎ ∈ Fin
∧ 𝑖 ∈
(mzPoly‘ℎ)) ∧
ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) ∧ 𝑑 ∈ (ℤ ↑m 𝐵)) → ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗))) = ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))) |
156 | 155 | mpteq2dva 5131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑖‘(𝑑 ↾ ℎ)) · (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) |
157 | 148, 156 | eqtrd 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) |
158 | | fveq1 6662 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) → (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))) = ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))) |
159 | 158 | mpteq2dv 5132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))) |
160 | 159 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) → (((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) |
161 | 160 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = (𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) → (((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) ↔ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) |
162 | 161 | rspcev 3543 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑙 ∈ (ℤ
↑m (ℎ ∪
𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗)))) ∈ (mzPoly‘(ℎ ∪ 𝑗)) ∧ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ ((𝑙 ∈ (ℤ ↑m (ℎ ∪ 𝑗)) ↦ ((𝑖‘(𝑙 ↾ ℎ)) · (𝑘‘(𝑙 ↾ 𝑗))))‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) → ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) |
163 | 146, 97, 157, 162 | syl12anc 835 |
. . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) |
164 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (ℎ ∪ 𝑗) → (mzPoly‘𝑎) = (mzPoly‘(ℎ ∪ 𝑗))) |
165 | | sseq1 3919 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (ℎ ∪ 𝑗) → (𝑎 ⊆ 𝐵 ↔ (ℎ ∪ 𝑗) ⊆ 𝐵)) |
166 | | reseq2 5823 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = (ℎ ∪ 𝑗) → (𝑑 ↾ 𝑎) = (𝑑 ↾ (ℎ ∪ 𝑗))) |
167 | 166 | fveq2d 6667 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = (ℎ ∪ 𝑗) → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))) |
168 | 167 | mpteq2dv 5132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = (ℎ ∪ 𝑗) → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) |
169 | 168 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (ℎ ∪ 𝑗) → (((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) |
170 | 165, 169 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (ℎ ∪ 𝑗) → ((𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) |
171 | 164, 170 | rexeqbidv 3320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (ℎ ∪ 𝑗) → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) |
172 | 168 | eqeq2d 2769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (ℎ ∪ 𝑗) → (((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))) |
173 | 165, 172 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (ℎ ∪ 𝑗) → ((𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) |
174 | 164, 173 | rexeqbidv 3320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (ℎ ∪ 𝑗) → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) |
175 | 171, 174 | anbi12d 633 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (ℎ ∪ 𝑗) → ((∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) ↔ (∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) ∧ ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗)))))))) |
176 | 175 | rspcev 3543 |
. . . . . . . . . . . . . . . . 17
⊢ (((ℎ ∪ 𝑗) ∈ Fin ∧ (∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))) ∧ ∃𝑏 ∈ (mzPoly‘(ℎ ∪ 𝑗))((ℎ ∪ 𝑗) ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ (ℎ ∪ 𝑗))))))) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
177 | 78, 144, 163, 176 | syl12anc 835 |
. . . . . . . . . . . . . . . 16
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ ℎ ⊆ 𝐵) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
178 | 177 | adantlrr 720 |
. . . . . . . . . . . . . . 15
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ 𝑗 ⊆ 𝐵)) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
179 | 178 | adantrrr 724 |
. . . . . . . . . . . . . 14
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
180 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) |
181 | | simprrr 781 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) |
182 | 180, 181 | oveq12d 7174 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (𝑓 ∘f + 𝑔) = ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) |
183 | 182 | eqeq1d 2760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
184 | 183 | anbi2d 631 |
. . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
185 | 184 | rexbidv 3221 |
. . . . . . . . . . . . . . . 16
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
186 | 180, 181 | oveq12d 7174 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (𝑓 ∘f · 𝑔) = ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗))))) |
187 | 186 | eqeq1d 2760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
188 | 187 | anbi2d 631 |
. . . . . . . . . . . . . . . . 17
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
189 | 188 | rexbidv 3221 |
. . . . . . . . . . . . . . . 16
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
190 | 185, 189 | anbi12d 633 |
. . . . . . . . . . . . . . 15
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ((∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) ↔ (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))))) |
191 | 190 | rexbidv 3221 |
. . . . . . . . . . . . . 14
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) ↔ ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f + (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))) ∘f · (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑘‘(𝑑 ↾ 𝑗)))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))))) |
192 | 179, 191 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ∃𝑎 ∈ Fin (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
193 | | r19.40 3264 |
. . . . . . . . . . . . 13
⊢
(∃𝑎 ∈ Fin
(∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
194 | 192, 193 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) ∧ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
195 | 194 | exp32 424 |
. . . . . . . . . . 11
⊢ (((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) → ((𝑗 ∈ Fin ∧ 𝑘 ∈ (mzPoly‘𝑗)) → ((𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))))) |
196 | 195 | rexlimdvv 3217 |
. . . . . . . . . 10
⊢ (((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) ∧ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) → (∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))))) |
197 | 196 | ex 416 |
. . . . . . . . 9
⊢ ((ℎ ∈ Fin ∧ 𝑖 ∈ (mzPoly‘ℎ)) → ((ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) → (∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))))) |
198 | 197 | rexlimivv 3216 |
. . . . . . . 8
⊢
(∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) → (∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))))) |
199 | 198 | imp 410 |
. . . . . . 7
⊢
((∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) ∧ ∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
200 | 199 | ad2ant2l 745 |
. . . . . 6
⊢ (((𝑓:(ℤ ↑m
𝐵)⟶ℤ ∧
∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ (𝑔:(ℤ ↑m 𝐵)⟶ℤ ∧
∃𝑗 ∈ Fin
∃𝑘 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
201 | 200 | 3adant1 1127 |
. . . . 5
⊢
((⊤ ∧ (𝑓:(ℤ ↑m 𝐵)⟶ℤ ∧
∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ (𝑔:(ℤ ↑m 𝐵)⟶ℤ ∧
∃𝑗 ∈ Fin
∃𝑘 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ∧ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
202 | 201 | simpld 498 |
. . . 4
⊢
((⊤ ∧ (𝑓:(ℤ ↑m 𝐵)⟶ℤ ∧
∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ (𝑔:(ℤ ↑m 𝐵)⟶ℤ ∧
∃𝑗 ∈ Fin
∃𝑘 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
203 | 201 | simprd 499 |
. . . 4
⊢
((⊤ ∧ (𝑓:(ℤ ↑m 𝐵)⟶ℤ ∧
∃ℎ ∈ Fin
∃𝑖 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) ∧ (𝑔:(ℤ ↑m 𝐵)⟶ℤ ∧
∃𝑗 ∈ Fin
∃𝑘 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
204 | | eqeq1 2762 |
. . . . . 6
⊢ (𝑒 = ((ℤ ↑m
𝐵) × {𝑓}) → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
205 | 204 | anbi2d 631 |
. . . . 5
⊢ (𝑒 = ((ℤ ↑m
𝐵) × {𝑓}) → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
206 | 205 | 2rexbidv 3224 |
. . . 4
⊢ (𝑒 = ((ℤ ↑m
𝐵) × {𝑓}) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ ((ℤ ↑m 𝐵) × {𝑓}) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
207 | | eqeq1 2762 |
. . . . . 6
⊢ (𝑒 = (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
208 | 207 | anbi2d 631 |
. . . . 5
⊢ (𝑒 = (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
209 | 208 | 2rexbidv 3224 |
. . . 4
⊢ (𝑒 = (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑔 ∈ (ℤ ↑m 𝐵) ↦ (𝑔‘𝑓)) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
210 | | eqeq1 2762 |
. . . . . . 7
⊢ (𝑒 = 𝑓 → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
211 | 210 | anbi2d 631 |
. . . . . 6
⊢ (𝑒 = 𝑓 → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
212 | 211 | 2rexbidv 3224 |
. . . . 5
⊢ (𝑒 = 𝑓 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
213 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑎 = ℎ → (mzPoly‘𝑎) = (mzPoly‘ℎ)) |
214 | | sseq1 3919 |
. . . . . . . . 9
⊢ (𝑎 = ℎ → (𝑎 ⊆ 𝐵 ↔ ℎ ⊆ 𝐵)) |
215 | | reseq2 5823 |
. . . . . . . . . . . 12
⊢ (𝑎 = ℎ → (𝑑 ↾ 𝑎) = (𝑑 ↾ ℎ)) |
216 | 215 | fveq2d 6667 |
. . . . . . . . . . 11
⊢ (𝑎 = ℎ → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ ℎ))) |
217 | 216 | mpteq2dv 5132 |
. . . . . . . . . 10
⊢ (𝑎 = ℎ → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))) |
218 | 217 | eqeq2d 2769 |
. . . . . . . . 9
⊢ (𝑎 = ℎ → (𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ))))) |
219 | 214, 218 | anbi12d 633 |
. . . . . . . 8
⊢ (𝑎 = ℎ → ((𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))))) |
220 | 213, 219 | rexeqbidv 3320 |
. . . . . . 7
⊢ (𝑎 = ℎ → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))))) |
221 | | fveq1 6662 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑖 → (𝑏‘(𝑑 ↾ ℎ)) = (𝑖‘(𝑑 ↾ ℎ))) |
222 | 221 | mpteq2dv 5132 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑖 → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))) |
223 | 222 | eqeq2d 2769 |
. . . . . . . . 9
⊢ (𝑏 = 𝑖 → (𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ))) ↔ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) |
224 | 223 | anbi2d 631 |
. . . . . . . 8
⊢ (𝑏 = 𝑖 → ((ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))) ↔ (ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))))) |
225 | 224 | cbvrexvw 3362 |
. . . . . . 7
⊢
(∃𝑏 ∈
(mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ ℎ)))) ↔ ∃𝑖 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) |
226 | 220, 225 | bitrdi 290 |
. . . . . 6
⊢ (𝑎 = ℎ → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑖 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))))) |
227 | 226 | cbvrexvw 3362 |
. . . . 5
⊢
(∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃ℎ ∈ Fin ∃𝑖 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ))))) |
228 | 212, 227 | bitrdi 290 |
. . . 4
⊢ (𝑒 = 𝑓 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃ℎ ∈ Fin ∃𝑖 ∈ (mzPoly‘ℎ)(ℎ ⊆ 𝐵 ∧ 𝑓 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑖‘(𝑑 ↾ ℎ)))))) |
229 | | eqeq1 2762 |
. . . . . . 7
⊢ (𝑒 = 𝑔 → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
230 | 229 | anbi2d 631 |
. . . . . 6
⊢ (𝑒 = 𝑔 → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
231 | 230 | 2rexbidv 3224 |
. . . . 5
⊢ (𝑒 = 𝑔 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
232 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑎 = 𝑗 → (mzPoly‘𝑎) = (mzPoly‘𝑗)) |
233 | | sseq1 3919 |
. . . . . . . . 9
⊢ (𝑎 = 𝑗 → (𝑎 ⊆ 𝐵 ↔ 𝑗 ⊆ 𝐵)) |
234 | | reseq2 5823 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑗 → (𝑑 ↾ 𝑎) = (𝑑 ↾ 𝑗)) |
235 | 234 | fveq2d 6667 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑗 → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑑 ↾ 𝑗))) |
236 | 235 | mpteq2dv 5132 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑗 → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))) |
237 | 236 | eqeq2d 2769 |
. . . . . . . . 9
⊢ (𝑎 = 𝑗 → (𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗))))) |
238 | 233, 237 | anbi12d 633 |
. . . . . . . 8
⊢ (𝑎 = 𝑗 → ((𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))))) |
239 | 232, 238 | rexeqbidv 3320 |
. . . . . . 7
⊢ (𝑎 = 𝑗 → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑏 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))))) |
240 | | fveq1 6662 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑘 → (𝑏‘(𝑑 ↾ 𝑗)) = (𝑘‘(𝑑 ↾ 𝑗))) |
241 | 240 | mpteq2dv 5132 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑘 → (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗))) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))) |
242 | 241 | eqeq2d 2769 |
. . . . . . . . 9
⊢ (𝑏 = 𝑘 → (𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗))) ↔ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) |
243 | 242 | anbi2d 631 |
. . . . . . . 8
⊢ (𝑏 = 𝑘 → ((𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))) ↔ (𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) |
244 | 243 | cbvrexvw 3362 |
. . . . . . 7
⊢
(∃𝑏 ∈
(mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑗)))) ↔ ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) |
245 | 239, 244 | bitrdi 290 |
. . . . . 6
⊢ (𝑎 = 𝑗 → (∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) |
246 | 245 | cbvrexvw 3362 |
. . . . 5
⊢
(∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗))))) |
247 | 231, 246 | bitrdi 290 |
. . . 4
⊢ (𝑒 = 𝑔 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑗 ∈ Fin ∃𝑘 ∈ (mzPoly‘𝑗)(𝑗 ⊆ 𝐵 ∧ 𝑔 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑘‘(𝑑 ↾ 𝑗)))))) |
248 | | eqeq1 2762 |
. . . . . 6
⊢ (𝑒 = (𝑓 ∘f + 𝑔) → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
249 | 248 | anbi2d 631 |
. . . . 5
⊢ (𝑒 = (𝑓 ∘f + 𝑔) → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
250 | 249 | 2rexbidv 3224 |
. . . 4
⊢ (𝑒 = (𝑓 ∘f + 𝑔) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f + 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
251 | | eqeq1 2762 |
. . . . . 6
⊢ (𝑒 = (𝑓 ∘f · 𝑔) → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
252 | 251 | anbi2d 631 |
. . . . 5
⊢ (𝑒 = (𝑓 ∘f · 𝑔) → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
253 | 252 | 2rexbidv 3224 |
. . . 4
⊢ (𝑒 = (𝑓 ∘f · 𝑔) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ (𝑓 ∘f · 𝑔) = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
254 | | eqeq1 2762 |
. . . . . 6
⊢ (𝑒 = 𝐴 → (𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
255 | 254 | anbi2d 631 |
. . . . 5
⊢ (𝑒 = 𝐴 → ((𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
256 | 255 | 2rexbidv 3224 |
. . . 4
⊢ (𝑒 = 𝐴 → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝑒 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))))) |
257 | 33, 74, 202, 203, 206, 209, 228, 247, 250, 253, 256 | mzpindd 40095 |
. . 3
⊢
((⊤ ∧ 𝐴
∈ (mzPoly‘𝐵))
→ ∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
258 | 1, 257 | mpan 689 |
. 2
⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))))) |
259 | | reseq1 5822 |
. . . . . . 7
⊢ (𝑑 = 𝑐 → (𝑑 ↾ 𝑎) = (𝑐 ↾ 𝑎)) |
260 | 259 | fveq2d 6667 |
. . . . . 6
⊢ (𝑑 = 𝑐 → (𝑏‘(𝑑 ↾ 𝑎)) = (𝑏‘(𝑐 ↾ 𝑎))) |
261 | 260 | cbvmptv 5139 |
. . . . 5
⊢ (𝑑 ∈ (ℤ
↑m 𝐵)
↦ (𝑏‘(𝑑 ↾ 𝑎))) = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))) |
262 | 261 | eqeq2i 2771 |
. . . 4
⊢ (𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎))) ↔ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎)))) |
263 | 262 | anbi2i 625 |
. . 3
⊢ ((𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
264 | 263 | 2rexbii 3176 |
. 2
⊢
(∃𝑎 ∈ Fin
∃𝑏 ∈
(mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑑 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑑 ↾ 𝑎)))) ↔ ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |
265 | 258, 264 | sylib 221 |
1
⊢ (𝐴 ∈ (mzPoly‘𝐵) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝐵 ∧ 𝐴 = (𝑐 ∈ (ℤ ↑m 𝐵) ↦ (𝑏‘(𝑐 ↾ 𝑎))))) |