MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.44v Structured version   Visualization version   GIF version

Theorem r19.44v 3278
Description: One direction of a restricted quantifier version of 19.44 2233. The other direction holds when 𝐴 is nonempty, see r19.44zv 4431. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.44v (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.44v
StepHypRef Expression
1 r19.43 3277 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
2 id 22 . . . 4 (𝜓𝜓)
32rexlimivw 3210 . . 3 (∃𝑥𝐴 𝜓𝜓)
43orim2i 907 . 2 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) → (∃𝑥𝐴 𝜑𝜓))
51, 4sylbi 216 1 (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator