MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.44zv Structured version   Visualization version   GIF version

Theorem r19.44zv 4496
Description: Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.44zv (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem r19.44zv
StepHypRef Expression
1 r19.43 3114 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
2 r19.9rzv 4492 . . 3 (𝐴 ≠ ∅ → (𝜓 ↔ ∃𝑥𝐴 𝜓))
32orbi2d 912 . 2 (𝐴 ≠ ∅ → ((∃𝑥𝐴 𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓)))
41, 3bitr4id 290 1 (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844  wne 2932  wrex 3062  c0 4315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-ne 2933  df-ral 3054  df-rex 3063  df-dif 3944  df-nul 4316
This theorem is referenced by:  fmla1  34869
  Copyright terms: Public domain W3C validator