MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.44zv Structured version   Visualization version   GIF version

Theorem r19.44zv 4421
Description: Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.44zv (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem r19.44zv
StepHypRef Expression
1 r19.9rzv 4417 . . 3 (𝐴 ≠ ∅ → (𝜓 ↔ ∃𝑥𝐴 𝜓))
21orbi2d 913 . 2 (𝐴 ≠ ∅ → ((∃𝑥𝐴 𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓)))
3 r19.43 3332 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
42, 3syl6rbbr 293 1 (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 844  wne 3011  wrex 3131  c0 4265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-11 2161  ax-12 2178  ax-ext 2794
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-dif 3911  df-nul 4266
This theorem is referenced by:  fmla1  32708
  Copyright terms: Public domain W3C validator