![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.44zv | Structured version Visualization version GIF version |
Description: Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.44zv | ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.43 3121 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
2 | r19.9rzv 4499 | . . 3 ⊢ (𝐴 ≠ ∅ → (𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | |
3 | 2 | orbi2d 913 | . 2 ⊢ (𝐴 ≠ ∅ → ((∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) |
4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 ≠ wne 2939 ∃wrex 3069 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-ne 2940 df-ral 3061 df-rex 3070 df-dif 3951 df-nul 4323 |
This theorem is referenced by: fmla1 34677 |
Copyright terms: Public domain | W3C validator |