MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.45v Structured version   Visualization version   GIF version

Theorem r19.45v 3199
Description: Restricted quantifier version of one direction of 19.45 2239. The other direction holds when 𝐴 is nonempty, see r19.45zv 4526. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.45v (∃𝑥𝐴 (𝜑𝜓) → (𝜑 ∨ ∃𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.45v
StepHypRef Expression
1 r19.43 3128 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
2 id 22 . . . 4 (𝜑𝜑)
32rexlimivw 3157 . . 3 (∃𝑥𝐴 𝜑𝜑)
43orim1i 908 . 2 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓) → (𝜑 ∨ ∃𝑥𝐴 𝜓))
51, 4sylbi 217 1 (∃𝑥𝐴 (𝜑𝜓) → (𝜑 ∨ ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-ral 3068  df-rex 3077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator