|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > r19.45v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of one direction of 19.45 2237. The other direction holds when 𝐴 is nonempty, see r19.45zv 4502. (Contributed by NM, 2-Apr-2004.) | 
| Ref | Expression | 
|---|---|
| r19.45v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.43 3121 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | id 22 | . . . 4 ⊢ (𝜑 → 𝜑) | |
| 3 | 2 | rexlimivw 3150 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜑) | 
| 4 | 3 | orim1i 909 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | 
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 847 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |