Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.45v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of one direction of 19.45 2234. The other direction holds when 𝐴 is nonempty, see r19.45zv 4430. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
r19.45v | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.43 3277 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
2 | id 22 | . . . 4 ⊢ (𝜑 → 𝜑) | |
3 | 2 | rexlimivw 3210 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → 𝜑) |
4 | 3 | orim1i 906 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
5 | 1, 4 | sylbi 216 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) → (𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |