| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > antisymrelres | Structured version Visualization version GIF version | ||
| Description: (Contributed by Peter Mazsa, 25-Jun-2024.) |
| Ref | Expression |
|---|---|
| antisymrelres | ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5976 | . . 3 ⊢ Rel (𝑅 ↾ 𝐴) | |
| 2 | dfantisymrel5 38754 | . . 3 ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ (∀𝑥∀𝑦((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅 ↾ 𝐴))) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥∀𝑦((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦)) |
| 4 | brres 5957 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑥(𝑅 ↾ 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) | |
| 5 | 4 | elv 3452 | . . . . . 6 ⊢ (𝑥(𝑅 ↾ 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
| 6 | brres 5957 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦(𝑅 ↾ 𝐴)𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥))) | |
| 7 | 6 | elv 3452 | . . . . . 6 ⊢ (𝑦(𝑅 ↾ 𝐴)𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)) |
| 8 | 5, 7 | anbi12i 628 | . . . . 5 ⊢ ((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥))) |
| 9 | an4 656 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ ((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) |
| 11 | 10 | imbi1i 349 | . . 3 ⊢ (((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) → 𝑥 = 𝑦)) |
| 12 | 11 | 2albii 1820 | . 2 ⊢ (∀𝑥∀𝑦((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) → 𝑥 = 𝑦)) |
| 13 | r2alan 38238 | . 2 ⊢ (∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | |
| 14 | 3, 12, 13 | 3bitri 297 | 1 ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 class class class wbr 5107 ↾ cres 5640 Rel wrel 5643 AntisymRel wantisymrel 38206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-cnvrefrel 38518 df-antisymrel 38752 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |