| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > antisymrelres | Structured version Visualization version GIF version | ||
| Description: (Contributed by Peter Mazsa, 25-Jun-2024.) |
| Ref | Expression |
|---|---|
| antisymrelres | ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5949 | . . 3 ⊢ Rel (𝑅 ↾ 𝐴) | |
| 2 | dfantisymrel5 38800 | . . 3 ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ (∀𝑥∀𝑦((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅 ↾ 𝐴))) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥∀𝑦((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦)) |
| 4 | brres 5930 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑥(𝑅 ↾ 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) | |
| 5 | 4 | elv 3441 | . . . . . 6 ⊢ (𝑥(𝑅 ↾ 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
| 6 | brres 5930 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦(𝑅 ↾ 𝐴)𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥))) | |
| 7 | 6 | elv 3441 | . . . . . 6 ⊢ (𝑦(𝑅 ↾ 𝐴)𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)) |
| 8 | 5, 7 | anbi12i 628 | . . . . 5 ⊢ ((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥))) |
| 9 | an4 656 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | |
| 10 | 8, 9 | bitri 275 | . . . 4 ⊢ ((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) |
| 11 | 10 | imbi1i 349 | . . 3 ⊢ (((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) → 𝑥 = 𝑦)) |
| 12 | 11 | 2albii 1821 | . 2 ⊢ (∀𝑥∀𝑦((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) → 𝑥 = 𝑦)) |
| 13 | r2alan 38284 | . 2 ⊢ (∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | |
| 14 | 3, 12, 13 | 3bitri 297 | 1 ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 class class class wbr 5086 ↾ cres 5613 Rel wrel 5616 AntisymRel wantisymrel 38252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-cnvrefrel 38564 df-antisymrel 38798 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |