![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > antisymrelres | Structured version Visualization version GIF version |
Description: (Contributed by Peter Mazsa, 25-Jun-2024.) |
Ref | Expression |
---|---|
antisymrelres | ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6026 | . . 3 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | dfantisymrel5 38744 | . . 3 ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ (∀𝑥∀𝑦((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅 ↾ 𝐴))) | |
3 | 1, 2 | mpbiran2 710 | . 2 ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥∀𝑦((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦)) |
4 | brres 6007 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑥(𝑅 ↾ 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦))) | |
5 | 4 | elv 3483 | . . . . . 6 ⊢ (𝑥(𝑅 ↾ 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)) |
6 | brres 6007 | . . . . . . 7 ⊢ (𝑥 ∈ V → (𝑦(𝑅 ↾ 𝐴)𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥))) | |
7 | 6 | elv 3483 | . . . . . 6 ⊢ (𝑦(𝑅 ↾ 𝐴)𝑥 ↔ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)) |
8 | 5, 7 | anbi12i 628 | . . . . 5 ⊢ ((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥))) |
9 | an4 656 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝑥)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | |
10 | 8, 9 | bitri 275 | . . . 4 ⊢ ((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) |
11 | 10 | imbi1i 349 | . . 3 ⊢ (((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) → 𝑥 = 𝑦)) |
12 | 11 | 2albii 1817 | . 2 ⊢ (∀𝑥∀𝑦((𝑥(𝑅 ↾ 𝐴)𝑦 ∧ 𝑦(𝑅 ↾ 𝐴)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) → 𝑥 = 𝑦)) |
13 | r2alan 38231 | . 2 ⊢ (∀𝑥∀𝑦(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | |
14 | 3, 12, 13 | 3bitri 297 | 1 ⊢ ( AntisymRel (𝑅 ↾ 𝐴) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 class class class wbr 5148 ↾ cres 5691 Rel wrel 5694 AntisymRel wantisymrel 38199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-cnvrefrel 38509 df-antisymrel 38742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |