Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antisymrelres Structured version   Visualization version   GIF version

Theorem antisymrelres 37539
Description: (Contributed by Peter Mazsa, 25-Jun-2024.)
Assertion
Ref Expression
antisymrelres ( AntisymRel (𝑅𝐴) ↔ ∀𝑥𝐴𝑦𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem antisymrelres
StepHypRef Expression
1 relres 6005 . . 3 Rel (𝑅𝐴)
2 dfantisymrel5 37538 . . 3 ( AntisymRel (𝑅𝐴) ↔ (∀𝑥𝑦((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅𝐴)))
31, 2mpbiran2 709 . 2 ( AntisymRel (𝑅𝐴) ↔ ∀𝑥𝑦((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) → 𝑥 = 𝑦))
4 brres 5983 . . . . . . 7 (𝑦 ∈ V → (𝑥(𝑅𝐴)𝑦 ↔ (𝑥𝐴𝑥𝑅𝑦)))
54elv 3481 . . . . . 6 (𝑥(𝑅𝐴)𝑦 ↔ (𝑥𝐴𝑥𝑅𝑦))
6 brres 5983 . . . . . . 7 (𝑥 ∈ V → (𝑦(𝑅𝐴)𝑥 ↔ (𝑦𝐴𝑦𝑅𝑥)))
76elv 3481 . . . . . 6 (𝑦(𝑅𝐴)𝑥 ↔ (𝑦𝐴𝑦𝑅𝑥))
85, 7anbi12i 628 . . . . 5 ((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) ↔ ((𝑥𝐴𝑥𝑅𝑦) ∧ (𝑦𝐴𝑦𝑅𝑥)))
9 an4 655 . . . . 5 (((𝑥𝐴𝑥𝑅𝑦) ∧ (𝑦𝐴𝑦𝑅𝑥)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)))
108, 9bitri 275 . . . 4 ((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)))
1110imbi1i 350 . . 3 (((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) → 𝑥 = 𝑦) ↔ (((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) → 𝑥 = 𝑦))
12112albii 1823 . 2 (∀𝑥𝑦((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦(((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) → 𝑥 = 𝑦))
13 r2alan 37022 . 2 (∀𝑥𝑦(((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
143, 12, 133bitri 297 1 ( AntisymRel (𝑅𝐴) ↔ ∀𝑥𝐴𝑦𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475   class class class wbr 5144  cres 5674  Rel wrel 5677   AntisymRel wantisymrel 36986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-cnvrefrel 37303  df-antisymrel 37536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator