Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antisymrelres Structured version   Visualization version   GIF version

Theorem antisymrelres 38287
Description: (Contributed by Peter Mazsa, 25-Jun-2024.)
Assertion
Ref Expression
antisymrelres ( AntisymRel (𝑅𝐴) ↔ ∀𝑥𝐴𝑦𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦

Proof of Theorem antisymrelres
StepHypRef Expression
1 relres 6006 . . 3 Rel (𝑅𝐴)
2 dfantisymrel5 38286 . . 3 ( AntisymRel (𝑅𝐴) ↔ (∀𝑥𝑦((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) → 𝑥 = 𝑦) ∧ Rel (𝑅𝐴)))
31, 2mpbiran2 708 . 2 ( AntisymRel (𝑅𝐴) ↔ ∀𝑥𝑦((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) → 𝑥 = 𝑦))
4 brres 5987 . . . . . . 7 (𝑦 ∈ V → (𝑥(𝑅𝐴)𝑦 ↔ (𝑥𝐴𝑥𝑅𝑦)))
54elv 3469 . . . . . 6 (𝑥(𝑅𝐴)𝑦 ↔ (𝑥𝐴𝑥𝑅𝑦))
6 brres 5987 . . . . . . 7 (𝑥 ∈ V → (𝑦(𝑅𝐴)𝑥 ↔ (𝑦𝐴𝑦𝑅𝑥)))
76elv 3469 . . . . . 6 (𝑦(𝑅𝐴)𝑥 ↔ (𝑦𝐴𝑦𝑅𝑥))
85, 7anbi12i 626 . . . . 5 ((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) ↔ ((𝑥𝐴𝑥𝑅𝑦) ∧ (𝑦𝐴𝑦𝑅𝑥)))
9 an4 654 . . . . 5 (((𝑥𝐴𝑥𝑅𝑦) ∧ (𝑦𝐴𝑦𝑅𝑥)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)))
108, 9bitri 274 . . . 4 ((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)))
1110imbi1i 348 . . 3 (((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) → 𝑥 = 𝑦) ↔ (((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) → 𝑥 = 𝑦))
12112albii 1814 . 2 (∀𝑥𝑦((𝑥(𝑅𝐴)𝑦𝑦(𝑅𝐴)𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦(((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) → 𝑥 = 𝑦))
13 r2alan 37773 . 2 (∀𝑥𝑦(((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑦𝑦𝑅𝑥)) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
143, 12, 133bitri 296 1 ( AntisymRel (𝑅𝐴) ↔ ∀𝑥𝐴𝑦𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wcel 2098  wral 3051  Vcvv 3463   class class class wbr 5144  cres 5675  Rel wrel 5678   AntisymRel wantisymrel 37738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-dm 5683  df-rn 5684  df-res 5685  df-cnvrefrel 38051  df-antisymrel 38284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator