Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrabi Structured version   Visualization version   GIF version

Theorem ssrabi 38235
Description: Inference of restricted abstraction subclass from implication. (Contributed by Peter Mazsa, 26-Oct-2022.)
Hypothesis
Ref Expression
ssrabi.1 (𝜑𝜓)
Assertion
Ref Expression
ssrabi {𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓}

Proof of Theorem ssrabi
StepHypRef Expression
1 ssrabi.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝑥𝐴 → (𝜑𝜓))
32ss2rabi 4048 1 {𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {crab 3411  wss 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rab 3412  df-ss 3939
This theorem is referenced by:  refrelsredund4  38617
  Copyright terms: Public domain W3C validator