Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabbida2 Structured version   Visualization version   GIF version

Theorem rabbida2 45133
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rabbida2.1 𝑥𝜑
rabbida2.2 (𝜑𝐴 = 𝐵)
rabbida2.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabbida2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})

Proof of Theorem rabbida2
StepHypRef Expression
1 rabbida2.1 . . 3 𝑥𝜑
2 rabbida2.2 . . . . 5 (𝜑𝐴 = 𝐵)
32eleq2d 2815 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
4 rabbida2.3 . . . 4 (𝜑 → (𝜓𝜒))
53, 4anbi12d 632 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
61, 5abbid 2798 . 2 (𝜑 → {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐵𝜒)})
7 df-rab 3409 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
8 df-rab 3409 . 2 {𝑥𝐵𝜒} = {𝑥 ∣ (𝑥𝐵𝜒)}
96, 7, 83eqtr4g 2790 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  {cab 2708  {crab 3408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409
This theorem is referenced by:  smflimmpt  46815
  Copyright terms: Public domain W3C validator