![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabbida2 | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
rabbida2.1 | ⊢ Ⅎ𝑥𝜑 |
rabbida2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rabbida2.3 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabbida2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbida2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rabbida2.2 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eleq2d 2819 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | rabbida2.3 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
6 | 1, 5 | abbid 2803 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)}) |
7 | df-rab 3433 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
8 | df-rab 3433 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜒)} | |
9 | 6, 7, 8 | 3eqtr4g 2797 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 {cab 2709 {crab 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 |
This theorem is referenced by: smflimmpt 45512 |
Copyright terms: Public domain | W3C validator |