Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabbida2 Structured version   Visualization version   GIF version

Theorem rabbida2 43002
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rabbida2.1 𝑥𝜑
rabbida2.2 (𝜑𝐴 = 𝐵)
rabbida2.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rabbida2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})

Proof of Theorem rabbida2
StepHypRef Expression
1 rabbida2.1 . . 3 𝑥𝜑
2 rabbida2.2 . . . . 5 (𝜑𝐴 = 𝐵)
32eleq2d 2822 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
4 rabbida2.3 . . . 4 (𝜑 → (𝜓𝜒))
53, 4anbi12d 631 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
61, 5abbid 2807 . 2 (𝜑 → {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐵𝜒)})
7 df-rab 3404 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
8 df-rab 3404 . 2 {𝑥𝐵𝜒} = {𝑥 ∣ (𝑥𝐵𝜒)}
96, 7, 83eqtr4g 2801 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wnf 1784  wcel 2105  {cab 2713  {crab 3403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404
This theorem is referenced by:  smflimmpt  44685
  Copyright terms: Public domain W3C validator