Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimmpt Structured version   Visualization version   GIF version

Theorem smflimmpt 46787
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). 𝐴 can contain 𝑚 as a free variable, in other words it can be thought as an indexed collection 𝐴(𝑚). 𝐵 can be thought as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimmpt.p 𝑚𝜑
smflimmpt.x 𝑥𝜑
smflimmpt.n 𝑛𝜑
smflimmpt.m (𝜑𝑀 ∈ ℤ)
smflimmpt.z 𝑍 = (ℤ𝑀)
smflimmpt.a ((𝜑𝑚𝑍) → 𝐴𝑉)
smflimmpt.b ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
smflimmpt.s (𝜑𝑆 ∈ SAlg)
smflimmpt.l ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smflimmpt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
smflimmpt.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
Assertion
Ref Expression
smflimmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑆,𝑚,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑚,𝑛)   𝑊(𝑥,𝑚,𝑛)

Proof of Theorem smflimmpt
StepHypRef Expression
1 smflimmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))))
3 smflimmpt.x . . . 4 𝑥𝜑
4 smflimmpt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
54a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
6 smflimmpt.n . . . . . . . . . . . . . 14 𝑛𝜑
7 smflimmpt.p . . . . . . . . . . . . . . . 16 𝑚𝜑
8 nfv 1914 . . . . . . . . . . . . . . . 16 𝑚 𝑛𝑍
97, 8nfan 1899 . . . . . . . . . . . . . . 15 𝑚(𝜑𝑛𝑍)
10 smflimmpt.z . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
1110uztrn2 12869 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1211adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
14 smflimmpt.a . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → 𝐴𝑉)
1514mptexd 7215 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ V)
1613, 12, 15syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) ∈ V)
17 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑍 ↦ (𝑥𝐴𝐵)) = (𝑚𝑍 ↦ (𝑥𝐴𝐵))
1817fvmpt2 6996 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑍 ∧ (𝑥𝐴𝐵) ∈ V) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
1912, 16, 18syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2019dmeqd 5885 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = dom (𝑥𝐴𝐵))
21 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑛𝑍
223, 21nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑𝑛𝑍)
23 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑚 ∈ (ℤ𝑛)
2422, 23nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛))
25 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝜑)
2612adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑚𝑍)
27 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑥𝐴)
28 smflimmpt.b . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
2925, 26, 27, 28syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝐵𝑊)
30 eqid 2735 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3124, 29, 30fnmptd 6678 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) Fn 𝐴)
3231fndmd 6642 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = 𝐴)
3320, 32eqtr2d 2771 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
349, 33iineq2d 4991 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
356, 34iuneq2df 45019 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
36 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → 𝑚𝑍)
3736, 15, 18syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
3837eqcomd 2741 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) = ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3938dmeqd 5885 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4013, 12, 39syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
419, 40iineq2d 4991 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
426, 41iuneq2df 45019 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4335, 42eqtr4d 2773 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4443eleq2d 2820 . . . . . . . . . . 11 (𝜑 → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)))
4544biimpa 476 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4645adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
47 eliun 4971 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4847biimpi 216 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4948adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5049adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
51 nfv 1914 . . . . . . . . . . . . 13 𝑛(𝑚𝑍𝐵) ∈ dom ⇝
526, 51nfan 1899 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )
53 nfv 1914 . . . . . . . . . . . 12 𝑛(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝
54 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
55 nfcv 2898 . . . . . . . . . . . . . . . . . 18 𝑚𝑥
56 nfii1 5005 . . . . . . . . . . . . . . . . . 18 𝑚 𝑚 ∈ (ℤ𝑛)𝐴
5755, 56nfel 2913 . . . . . . . . . . . . . . . . 17 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)𝐴
589, 57nfan 1899 . . . . . . . . . . . . . . . 16 𝑚((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5910eluzelz2 45378 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛 ∈ ℤ)
6059ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
61 eqid 2735 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
6210fvexi 6889 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
6362a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
6410uzssd3 45401 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
6564ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
66 fvexd 6890 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
67 eliinid 45083 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)𝐴𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6867adantll 714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6913adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
7012adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
7169, 70, 68, 28syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
7230fvmpt2 6996 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7368, 71, 72syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7458, 60, 61, 63, 63, 65, 65, 66, 73climeldmeqmpt3 45666 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7574adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7654, 75mpbird 257 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
7776exp31 419 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
7852, 53, 77rexlimd 3249 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
7978adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8050, 79mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8146, 80jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8281ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
8344biimpar 477 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8483adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8584, 48syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
866, 53nfan 1899 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
87 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8874adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
8987, 88mpbid 232 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9089exp31 419 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ )))
9186, 51, 90rexlimd 3249 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9291adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9385, 92mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9484, 93jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ))
9594ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )))
9682, 95impbid 212 . . . . . 6 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
973, 96rabbida3 45107 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
985, 97eqtrd 2770 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
994eleq2i 2826 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
10099biimpi 216 . . . . . . . 8 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
101 rabidim1 3438 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
102100, 101, 483syl 18 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
103102adantl 481 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
104 nfcv 2898 . . . . . . . . 9 𝑛𝑥
105 nfiu1 5003 . . . . . . . . . . 11 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴
10651, 105nfrabw 3454 . . . . . . . . . 10 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
1074, 106nfcxfr 2896 . . . . . . . . 9 𝑛𝐷
108104, 107nfel 2913 . . . . . . . 8 𝑛 𝑥𝐷
1096, 108nfan 1899 . . . . . . 7 𝑛(𝜑𝑥𝐷)
110 nfv 1914 . . . . . . 7 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))
1117, 8, 57nf3an 1901 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
112 simp2 1137 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍)
113112, 59syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
11462a1i 11 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
11510, 112uzssd2 45392 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
116 fvexd 6890 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
117673ad2antl3 1188 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
118 simpl1 1192 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
119112, 11sylan 580 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
120118, 119, 117, 28syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
121117, 120, 72syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
122111, 113, 61, 114, 114, 115, 115, 116, 121climfveqmpt3 45659 . . . . . . . . 9 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
1231223exp 1119 . . . . . . . 8 (𝜑 → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
124123adantr 480 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
125109, 110, 124rexlimd 3249 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))))
126103, 125mpd 15 . . . . 5 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
127126eqcomd 2741 . . . 4 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍𝐵)) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))))
1283, 98, 127mpteq12da 5203 . . 3 (𝜑 → (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))))
12938eqcomd 2741 . . . . . . . . 9 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
130129fveq1d 6877 . . . . . . . 8 ((𝜑𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
1317, 130mpteq2da 5213 . . . . . . 7 (𝜑 → (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))
132131eqcomd 2741 . . . . . 6 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
133132eleq1d 2819 . . . . 5 (𝜑 → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ ))
1343, 42, 133rabbida2 45104 . . . 4 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ })
135130eqcomd 2741 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑥𝐴𝐵)‘𝑥) = (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))
1367, 135mpteq2da 5213 . . . . 5 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
137136fveq2d 6879 . . . 4 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
1383, 134, 137mpteq12df 5204 . . 3 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
1392, 128, 1383eqtrd 2774 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
140 nfmpt1 5220 . . 3 𝑚(𝑚𝑍 ↦ (𝑥𝐴𝐵))
141 nfcv 2898 . . . 4 𝑥𝑍
142 nfmpt1 5220 . . . 4 𝑥(𝑥𝐴𝐵)
143141, 142nfmpt 5219 . . 3 𝑥(𝑚𝑍 ↦ (𝑥𝐴𝐵))
144 smflimmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
145 smflimmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
146 smflimmpt.l . . . 4 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
1477, 146, 17fmptdf 7106 . . 3 (𝜑 → (𝑚𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
148 eqid 2735 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ }
149 eqid 2735 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
150140, 143, 144, 10, 145, 147, 148, 149smflim2 46783 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
151139, 150eqeltrd 2834 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2108  wrex 3060  {crab 3415  Vcvv 3459  wss 3926   ciun 4967   ciin 4968  cmpt 5201  dom cdm 5654  cfv 6530  cz 12586  cuz 12850  cli 15498  SAlgcsalg 46285  SMblFncsmblfn 46672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cc 10447  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-omul 8483  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-acn 9954  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-ioo 13364  df-ico 13366  df-fl 13807  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-rest 17434  df-salg 46286  df-smblfn 46673
This theorem is referenced by:  smflimsuplem3  46799
  Copyright terms: Public domain W3C validator