Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimmpt Structured version   Visualization version   GIF version

Theorem smflimmpt 46121
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). 𝐴 can contain 𝑚 as a free variable, in other words it can be thought as an indexed collection 𝐴(𝑚). 𝐵 can be thought as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimmpt.p 𝑚𝜑
smflimmpt.x 𝑥𝜑
smflimmpt.n 𝑛𝜑
smflimmpt.m (𝜑𝑀 ∈ ℤ)
smflimmpt.z 𝑍 = (ℤ𝑀)
smflimmpt.a ((𝜑𝑚𝑍) → 𝐴𝑉)
smflimmpt.b ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
smflimmpt.s (𝜑𝑆 ∈ SAlg)
smflimmpt.l ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smflimmpt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
smflimmpt.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
Assertion
Ref Expression
smflimmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑆,𝑚,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑚,𝑛)   𝑊(𝑥,𝑚,𝑛)

Proof of Theorem smflimmpt
StepHypRef Expression
1 smflimmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))))
3 smflimmpt.x . . . 4 𝑥𝜑
4 smflimmpt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
54a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
6 smflimmpt.n . . . . . . . . . . . . . 14 𝑛𝜑
7 smflimmpt.p . . . . . . . . . . . . . . . 16 𝑚𝜑
8 nfv 1910 . . . . . . . . . . . . . . . 16 𝑚 𝑛𝑍
97, 8nfan 1895 . . . . . . . . . . . . . . 15 𝑚(𝜑𝑛𝑍)
10 smflimmpt.z . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
1110uztrn2 12863 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1211adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
14 smflimmpt.a . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → 𝐴𝑉)
1514mptexd 7230 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ V)
1613, 12, 15syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) ∈ V)
17 eqid 2727 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑍 ↦ (𝑥𝐴𝐵)) = (𝑚𝑍 ↦ (𝑥𝐴𝐵))
1817fvmpt2 7010 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑍 ∧ (𝑥𝐴𝐵) ∈ V) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
1912, 16, 18syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2019dmeqd 5902 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = dom (𝑥𝐴𝐵))
21 nfv 1910 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑛𝑍
223, 21nfan 1895 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑𝑛𝑍)
23 nfv 1910 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑚 ∈ (ℤ𝑛)
2422, 23nfan 1895 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛))
25 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝜑)
2612adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑚𝑍)
27 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑥𝐴)
28 smflimmpt.b . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
2925, 26, 27, 28syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝐵𝑊)
30 eqid 2727 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3124, 29, 30fnmptd 6690 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) Fn 𝐴)
3231fndmd 6653 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = 𝐴)
3320, 32eqtr2d 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
349, 33iineq2d 5014 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
356, 34iuneq2df 44333 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
36 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → 𝑚𝑍)
3736, 15, 18syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
3837eqcomd 2733 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) = ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3938dmeqd 5902 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4013, 12, 39syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
419, 40iineq2d 5014 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
426, 41iuneq2df 44333 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4335, 42eqtr4d 2770 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4443eleq2d 2814 . . . . . . . . . . 11 (𝜑 → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)))
4544biimpa 476 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4645adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
47 eliun 4995 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4847biimpi 215 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4948adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5049adantrr 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
51 nfv 1910 . . . . . . . . . . . . 13 𝑛(𝑚𝑍𝐵) ∈ dom ⇝
526, 51nfan 1895 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )
53 nfv 1910 . . . . . . . . . . . 12 𝑛(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝
54 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
55 nfcv 2898 . . . . . . . . . . . . . . . . . 18 𝑚𝑥
56 nfii1 5026 . . . . . . . . . . . . . . . . . 18 𝑚 𝑚 ∈ (ℤ𝑛)𝐴
5755, 56nfel 2912 . . . . . . . . . . . . . . . . 17 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)𝐴
589, 57nfan 1895 . . . . . . . . . . . . . . . 16 𝑚((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5910eluzelz2 44708 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛 ∈ ℤ)
6059ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
61 eqid 2727 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
6210fvexi 6905 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
6362a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
6410uzssd3 44731 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
6564ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
66 fvexd 6906 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
67 eliinid 44400 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)𝐴𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6867adantll 713 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6913adantlr 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
7012adantlr 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
7169, 70, 68, 28syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
7230fvmpt2 7010 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7368, 71, 72syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7458, 60, 61, 63, 63, 65, 65, 66, 73climeldmeqmpt3 45000 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7574adantllr 718 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7654, 75mpbird 257 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
7776exp31 419 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
7852, 53, 77rexlimd 3258 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
7978adantrl 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8050, 79mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8146, 80jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8281ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
8344biimpar 477 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8483adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8584, 48syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
866, 53nfan 1895 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
87 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8874adantllr 718 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
8987, 88mpbid 231 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9089exp31 419 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ )))
9186, 51, 90rexlimd 3258 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9291adantrl 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9385, 92mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9484, 93jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ))
9594ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )))
9682, 95impbid 211 . . . . . 6 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
973, 96rabbida3 44424 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
985, 97eqtrd 2767 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
994eleq2i 2820 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
10099biimpi 215 . . . . . . . 8 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
101 rabidim1 3448 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
102100, 101, 483syl 18 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
103102adantl 481 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
104 nfcv 2898 . . . . . . . . 9 𝑛𝑥
105 nfiu1 5025 . . . . . . . . . . 11 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴
10651, 105nfrabw 3463 . . . . . . . . . 10 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
1074, 106nfcxfr 2896 . . . . . . . . 9 𝑛𝐷
108104, 107nfel 2912 . . . . . . . 8 𝑛 𝑥𝐷
1096, 108nfan 1895 . . . . . . 7 𝑛(𝜑𝑥𝐷)
110 nfv 1910 . . . . . . 7 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))
1117, 8, 57nf3an 1897 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
112 simp2 1135 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍)
113112, 59syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
11462a1i 11 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
11510, 112uzssd2 44722 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
116 fvexd 6906 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
117673ad2antl3 1185 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
118 simpl1 1189 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
119112, 11sylan 579 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
120118, 119, 117, 28syl3anc 1369 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
121117, 120, 72syl2anc 583 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
122111, 113, 61, 114, 114, 115, 115, 116, 121climfveqmpt3 44993 . . . . . . . . 9 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
1231223exp 1117 . . . . . . . 8 (𝜑 → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
124123adantr 480 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
125109, 110, 124rexlimd 3258 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))))
126103, 125mpd 15 . . . . 5 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
127126eqcomd 2733 . . . 4 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍𝐵)) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))))
1283, 98, 127mpteq12da 5227 . . 3 (𝜑 → (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))))
12938eqcomd 2733 . . . . . . . . 9 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
130129fveq1d 6893 . . . . . . . 8 ((𝜑𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
1317, 130mpteq2da 5240 . . . . . . 7 (𝜑 → (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))
132131eqcomd 2733 . . . . . 6 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
133132eleq1d 2813 . . . . 5 (𝜑 → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ ))
1343, 42, 133rabbida2 44421 . . . 4 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ })
135130eqcomd 2733 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑥𝐴𝐵)‘𝑥) = (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))
1367, 135mpteq2da 5240 . . . . 5 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
137136fveq2d 6895 . . . 4 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
1383, 134, 137mpteq12df 5228 . . 3 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
1392, 128, 1383eqtrd 2771 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
140 nfmpt1 5250 . . 3 𝑚(𝑚𝑍 ↦ (𝑥𝐴𝐵))
141 nfcv 2898 . . . 4 𝑥𝑍
142 nfmpt1 5250 . . . 4 𝑥(𝑥𝐴𝐵)
143141, 142nfmpt 5249 . . 3 𝑥(𝑚𝑍 ↦ (𝑥𝐴𝐵))
144 smflimmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
145 smflimmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
146 smflimmpt.l . . . 4 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
1477, 146, 17fmptdf 7121 . . 3 (𝜑 → (𝑚𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
148 eqid 2727 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ }
149 eqid 2727 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
150140, 143, 144, 10, 145, 147, 148, 149smflim2 46117 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
151139, 150eqeltrd 2828 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wnf 1778  wcel 2099  wrex 3065  {crab 3427  Vcvv 3469  wss 3944   ciun 4991   ciin 4992  cmpt 5225  dom cdm 5672  cfv 6542  cz 12580  cuz 12844  cli 15452  SAlgcsalg 45619  SMblFncsmblfn 46006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cc 10450  ax-ac2 10478  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-acn 9957  df-ac 10131  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-rp 12999  df-ioo 13352  df-ico 13354  df-fl 13781  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-rlim 15457  df-rest 17395  df-salg 45620  df-smblfn 46007
This theorem is referenced by:  smflimsuplem3  46133
  Copyright terms: Public domain W3C validator