Proof of Theorem smflimmpt
Step | Hyp | Ref
| Expression |
1 | | smflimmpt.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵)))) |
3 | | smflimmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
4 | | smflimmpt.d |
. . . . . 6
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ } |
5 | 4 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ }) |
6 | | smflimmpt.n |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛𝜑 |
7 | | smflimmpt.p |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚𝜑 |
8 | | nfv 1915 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚 𝑛 ∈ 𝑍 |
9 | 7, 8 | nfan 1900 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
10 | | smflimmpt.z |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑍 =
(ℤ≥‘𝑀) |
11 | 10 | uztrn2 12314 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
12 | 11 | adantll 713 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
13 | | simpll 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) |
14 | | smflimmpt.a |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝐴 ∈ 𝑉) |
15 | 14 | mptexd 6984 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
16 | 13, 12, 15 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
17 | | eqid 2758 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
18 | 17 | fvmpt2 6775 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ 𝑍 ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
19 | 12, 16, 18 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
20 | 19 | dmeqd 5751 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
21 | | nfv 1915 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥 𝑛 ∈ 𝑍 |
22 | 3, 21 | nfan 1900 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥(𝜑 ∧ 𝑛 ∈ 𝑍) |
23 | | nfv 1915 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥 𝑚 ∈
(ℤ≥‘𝑛) |
24 | 22, 23 | nfan 1900 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) |
25 | | simplll 774 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) ∧ 𝑥 ∈ 𝐴) → 𝜑) |
26 | 12 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) ∧ 𝑥 ∈ 𝐴) → 𝑚 ∈ 𝑍) |
27 | | simpr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
28 | | smflimmpt.b |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
29 | 25, 26, 27, 28 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
30 | | eqid 2758 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
31 | 24, 29, 30 | fnmptd 6477 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
32 | 31 | fndmd 6443 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
33 | 20, 32 | eqtr2d 2794 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐴 = dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
34 | 9, 33 | iineq2d 4909 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 = ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
35 | 6, 34 | iuneq2df 42088 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
36 | | simpr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) |
37 | 36, 15, 18 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
38 | 37 | eqcomd 2764 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) = ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
39 | 38 | dmeqd 5751 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
40 | 13, 12, 39 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
41 | 9, 40 | iineq2d 4909 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∩
𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
42 | 6, 41 | iuneq2df 42088 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)) |
43 | 35, 42 | eqtr4d 2796 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 = ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
44 | 43 | eleq2d 2837 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ↔ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵))) |
45 | 44 | biimpa 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
46 | 45 | adantrr 716 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
47 | | eliun 4890 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ↔ ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
48 | 47 | biimpi 219 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
49 | 48 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
50 | 49 | adantrr 716 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
51 | | nfv 1915 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛(𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ |
52 | 6, 51 | nfan 1900 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝜑 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
53 | | nfv 1915 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ |
54 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
55 | | nfcv 2919 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚𝑥 |
56 | | nfii1 4921 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 |
57 | 55, 56 | nfel 2933 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚 𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 |
58 | 9, 57 | nfan 1900 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
59 | 10 | eluzelz2 42441 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
60 | 59 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑛 ∈ ℤ) |
61 | | eqid 2758 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
62 | 10 | fvexi 6677 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑍 ∈ V |
63 | 62 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑍 ∈ V) |
64 | 10 | uzssd3 42464 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
65 | 64 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (ℤ≥‘𝑛) ⊆ 𝑍) |
66 | | fvexd 6678 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ∈ V) |
67 | | eliinid 42155 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ 𝐴) |
68 | 67 | adantll 713 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ 𝐴) |
69 | 13 | adantlr 714 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) |
70 | 12 | adantlr 714 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
71 | 69, 70, 68, 28 | syl3anc 1368 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐵 ∈ 𝑊) |
72 | 30 | fvmpt2 6775 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
73 | 68, 71, 72 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
74 | 58, 60, 61, 63, 63, 65, 65, 66, 73 | climeldmeqmpt3 42732 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → ((𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) |
75 | 74 | adantllr 718 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → ((𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) |
76 | 54, 75 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) |
77 | 76 | exp31 423 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ))) |
78 | 52, 53, 77 | rexlimd 3241 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ )) |
79 | 78 | adantrl 715 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ )) |
80 | 50, 79 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) → (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) |
81 | 46, 80 | jca 515 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ )) |
82 | 81 | ex 416 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ))) |
83 | 44 | biimpar 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
84 | 83 | adantrr 716 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ )) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
85 | 84, 48 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ )) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
86 | 6, 53 | nfan 1900 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝜑 ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) |
87 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) |
88 | 74 | adantllr 718 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → ((𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) |
89 | 87, 88 | mpbid 235 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
90 | 89 | exp31 423 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ))) |
91 | 86, 51, 90 | rexlimd 3241 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) |
92 | 91 | adantrl 715 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ )) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) |
93 | 85, 92 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
94 | 84, 93 | jca 515 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ )) |
95 | 94 | ex 416 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ))) |
96 | 82, 95 | impbid 215 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∧ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) ↔ (𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ))) |
97 | 3, 96 | rabbida3 42178 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ } = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ }) |
98 | 5, 97 | eqtrd 2793 |
. . . 4
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ }) |
99 | 4 | eleq2i 2843 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 ↔ 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ }) |
100 | 99 | biimpi 219 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ }) |
101 | | rabidim1 3298 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ } → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
102 | 100, 101,
48 | 3syl 18 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
103 | 102 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
104 | | nfcv 2919 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝑥 |
105 | | nfiu1 4920 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 |
106 | 51, 105 | nfrabw 3303 |
. . . . . . . . . 10
⊢
Ⅎ𝑛{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ } |
107 | 4, 106 | nfcxfr 2917 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝐷 |
108 | 104, 107 | nfel 2933 |
. . . . . . . 8
⊢
Ⅎ𝑛 𝑥 ∈ 𝐷 |
109 | 6, 108 | nfan 1900 |
. . . . . . 7
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) |
110 | | nfv 1915 |
. . . . . . 7
⊢
Ⅎ𝑛( ⇝
‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵)) |
111 | 7, 8, 57 | nf3an 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) |
112 | | simp2 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑛 ∈ 𝑍) |
113 | 112, 59 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑛 ∈ ℤ) |
114 | 62 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → 𝑍 ∈ V) |
115 | 10, 112 | uzssd2 42455 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → (ℤ≥‘𝑛) ⊆ 𝑍) |
116 | | fvexd 6678 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ∈ V) |
117 | 67 | 3ad2antl3 1184 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑥 ∈ 𝐴) |
118 | | simpl1 1188 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝜑) |
119 | 112, 11 | sylan 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
120 | 118, 119,
117, 28 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐵 ∈ 𝑊) |
121 | 117, 120,
72 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
122 | 111, 113,
61, 114, 114, 115, 115, 116, 121 | climfveqmpt3 42725 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))) |
123 | 122 | 3exp 1116 |
. . . . . . . 8
⊢ (𝜑 → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))))) |
124 | 123 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑛 ∈ 𝑍 → (𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))))) |
125 | 109, 110,
124 | rexlimd 3241 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∃𝑛 ∈ 𝑍 𝑥 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)𝐴 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵)))) |
126 | 103, 125 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))) |
127 | 126 | eqcomd 2764 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵)) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)))) |
128 | 3, 98, 127 | mpteq12da 42282 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))))) |
129 | 38 | eqcomd 2764 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
130 | 129 | fveq1d 6665 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
131 | 7, 130 | mpteq2da 5130 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) |
132 | 131 | eqcomd 2764 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) |
133 | 132 | eleq1d 2836 |
. . . . 5
⊢ (𝜑 → ((𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ )) |
134 | 3, 42, 133 | rabbida2 42175 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ } = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ }) |
135 | 130 | eqcomd 2764 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) |
136 | 7, 135 | mpteq2da 5130 |
. . . . 5
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))) |
137 | 136 | fveq2d 6667 |
. . . 4
⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) = ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) |
138 | 3, 134, 137 | mpteq12df 5118 |
. . 3
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∣ (𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑚 ∈ 𝑍 ↦ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)))) = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))))) |
139 | 2, 128, 138 | 3eqtrd 2797 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥))))) |
140 | | nfmpt1 5134 |
. . 3
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
141 | | nfcv 2919 |
. . . 4
⊢
Ⅎ𝑥𝑍 |
142 | | nfmpt1 5134 |
. . . 4
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
143 | 141, 142 | nfmpt 5133 |
. . 3
⊢
Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
144 | | smflimmpt.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
145 | | smflimmpt.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ SAlg) |
146 | | smflimmpt.l |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
147 | 7, 146, 17 | fmptdf 6878 |
. . 3
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)):𝑍⟶(SMblFn‘𝑆)) |
148 | | eqid 2758 |
. . 3
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } |
149 | | eqid 2758 |
. . 3
⊢ (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) |
150 | 140, 143,
144, 10, 145, 147, 148, 149 | smflim2 43838 |
. 2
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom ((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝
‘(𝑚 ∈ 𝑍 ↦ (((𝑚 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆)) |
151 | 139, 150 | eqeltrd 2852 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |