Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimmpt Structured version   Visualization version   GIF version

Theorem smflimmpt 45461
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). 𝐴 can contain 𝑚 as a free variable, in other words it can be thought as an indexed collection 𝐴(𝑚). 𝐵 can be thought as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimmpt.p 𝑚𝜑
smflimmpt.x 𝑥𝜑
smflimmpt.n 𝑛𝜑
smflimmpt.m (𝜑𝑀 ∈ ℤ)
smflimmpt.z 𝑍 = (ℤ𝑀)
smflimmpt.a ((𝜑𝑚𝑍) → 𝐴𝑉)
smflimmpt.b ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
smflimmpt.s (𝜑𝑆 ∈ SAlg)
smflimmpt.l ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smflimmpt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
smflimmpt.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
Assertion
Ref Expression
smflimmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑆,𝑚,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑚,𝑛)   𝑊(𝑥,𝑚,𝑛)

Proof of Theorem smflimmpt
StepHypRef Expression
1 smflimmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))))
3 smflimmpt.x . . . 4 𝑥𝜑
4 smflimmpt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
54a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
6 smflimmpt.n . . . . . . . . . . . . . 14 𝑛𝜑
7 smflimmpt.p . . . . . . . . . . . . . . . 16 𝑚𝜑
8 nfv 1918 . . . . . . . . . . . . . . . 16 𝑚 𝑛𝑍
97, 8nfan 1903 . . . . . . . . . . . . . . 15 𝑚(𝜑𝑛𝑍)
10 smflimmpt.z . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
1110uztrn2 12837 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1211adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
14 smflimmpt.a . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → 𝐴𝑉)
1514mptexd 7221 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ V)
1613, 12, 15syl2anc 585 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) ∈ V)
17 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑍 ↦ (𝑥𝐴𝐵)) = (𝑚𝑍 ↦ (𝑥𝐴𝐵))
1817fvmpt2 7005 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑍 ∧ (𝑥𝐴𝐵) ∈ V) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
1912, 16, 18syl2anc 585 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2019dmeqd 5903 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = dom (𝑥𝐴𝐵))
21 nfv 1918 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑛𝑍
223, 21nfan 1903 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑𝑛𝑍)
23 nfv 1918 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑚 ∈ (ℤ𝑛)
2422, 23nfan 1903 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛))
25 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝜑)
2612adantr 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑚𝑍)
27 simpr 486 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑥𝐴)
28 smflimmpt.b . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
2925, 26, 27, 28syl3anc 1372 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝐵𝑊)
30 eqid 2733 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3124, 29, 30fnmptd 6688 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) Fn 𝐴)
3231fndmd 6651 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = 𝐴)
3320, 32eqtr2d 2774 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
349, 33iineq2d 5019 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
356, 34iuneq2df 43666 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
36 simpr 486 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → 𝑚𝑍)
3736, 15, 18syl2anc 585 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
3837eqcomd 2739 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) = ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3938dmeqd 5903 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4013, 12, 39syl2anc 585 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
419, 40iineq2d 5019 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
426, 41iuneq2df 43666 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4335, 42eqtr4d 2776 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4443eleq2d 2820 . . . . . . . . . . 11 (𝜑 → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)))
4544biimpa 478 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4645adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
47 eliun 5000 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4847biimpi 215 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4948adantl 483 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5049adantrr 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
51 nfv 1918 . . . . . . . . . . . . 13 𝑛(𝑚𝑍𝐵) ∈ dom ⇝
526, 51nfan 1903 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )
53 nfv 1918 . . . . . . . . . . . 12 𝑛(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝
54 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
55 nfcv 2904 . . . . . . . . . . . . . . . . . 18 𝑚𝑥
56 nfii1 5031 . . . . . . . . . . . . . . . . . 18 𝑚 𝑚 ∈ (ℤ𝑛)𝐴
5755, 56nfel 2918 . . . . . . . . . . . . . . . . 17 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)𝐴
589, 57nfan 1903 . . . . . . . . . . . . . . . 16 𝑚((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5910eluzelz2 44048 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛 ∈ ℤ)
6059ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
61 eqid 2733 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
6210fvexi 6902 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
6362a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
6410uzssd3 44071 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
6564ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
66 fvexd 6903 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
67 eliinid 43733 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)𝐴𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6867adantll 713 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6913adantlr 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
7012adantlr 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
7169, 70, 68, 28syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
7230fvmpt2 7005 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7368, 71, 72syl2anc 585 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7458, 60, 61, 63, 63, 65, 65, 66, 73climeldmeqmpt3 44340 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7574adantllr 718 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7654, 75mpbird 257 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
7776exp31 421 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
7852, 53, 77rexlimd 3264 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
7978adantrl 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8050, 79mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8146, 80jca 513 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8281ex 414 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
8344biimpar 479 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8483adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8584, 48syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
866, 53nfan 1903 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
87 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8874adantllr 718 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
8987, 88mpbid 231 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9089exp31 421 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ )))
9186, 51, 90rexlimd 3264 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9291adantrl 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9385, 92mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9484, 93jca 513 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ))
9594ex 414 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )))
9682, 95impbid 211 . . . . . 6 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
973, 96rabbida3 43757 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
985, 97eqtrd 2773 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
994eleq2i 2826 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
10099biimpi 215 . . . . . . . 8 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
101 rabidim1 3454 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
102100, 101, 483syl 18 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
103102adantl 483 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
104 nfcv 2904 . . . . . . . . 9 𝑛𝑥
105 nfiu1 5030 . . . . . . . . . . 11 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴
10651, 105nfrabw 3469 . . . . . . . . . 10 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
1074, 106nfcxfr 2902 . . . . . . . . 9 𝑛𝐷
108104, 107nfel 2918 . . . . . . . 8 𝑛 𝑥𝐷
1096, 108nfan 1903 . . . . . . 7 𝑛(𝜑𝑥𝐷)
110 nfv 1918 . . . . . . 7 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))
1117, 8, 57nf3an 1905 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
112 simp2 1138 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍)
113112, 59syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
11462a1i 11 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
11510, 112uzssd2 44062 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
116 fvexd 6903 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
117673ad2antl3 1188 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
118 simpl1 1192 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
119112, 11sylan 581 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
120118, 119, 117, 28syl3anc 1372 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
121117, 120, 72syl2anc 585 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
122111, 113, 61, 114, 114, 115, 115, 116, 121climfveqmpt3 44333 . . . . . . . . 9 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
1231223exp 1120 . . . . . . . 8 (𝜑 → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
124123adantr 482 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
125109, 110, 124rexlimd 3264 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))))
126103, 125mpd 15 . . . . 5 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
127126eqcomd 2739 . . . 4 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍𝐵)) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))))
1283, 98, 127mpteq12da 5232 . . 3 (𝜑 → (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))))
12938eqcomd 2739 . . . . . . . . 9 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
130129fveq1d 6890 . . . . . . . 8 ((𝜑𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
1317, 130mpteq2da 5245 . . . . . . 7 (𝜑 → (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))
132131eqcomd 2739 . . . . . 6 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
133132eleq1d 2819 . . . . 5 (𝜑 → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ ))
1343, 42, 133rabbida2 43754 . . . 4 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ })
135130eqcomd 2739 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑥𝐴𝐵)‘𝑥) = (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))
1367, 135mpteq2da 5245 . . . . 5 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
137136fveq2d 6892 . . . 4 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
1383, 134, 137mpteq12df 5233 . . 3 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
1392, 128, 1383eqtrd 2777 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
140 nfmpt1 5255 . . 3 𝑚(𝑚𝑍 ↦ (𝑥𝐴𝐵))
141 nfcv 2904 . . . 4 𝑥𝑍
142 nfmpt1 5255 . . . 4 𝑥(𝑥𝐴𝐵)
143141, 142nfmpt 5254 . . 3 𝑥(𝑚𝑍 ↦ (𝑥𝐴𝐵))
144 smflimmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
145 smflimmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
146 smflimmpt.l . . . 4 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
1477, 146, 17fmptdf 7112 . . 3 (𝜑 → (𝑚𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
148 eqid 2733 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ }
149 eqid 2733 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
150140, 143, 144, 10, 145, 147, 148, 149smflim2 45457 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
151139, 150eqeltrd 2834 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wnf 1786  wcel 2107  wrex 3071  {crab 3433  Vcvv 3475  wss 3947   ciun 4996   ciin 4997  cmpt 5230  dom cdm 5675  cfv 6540  cz 12554  cuz 12818  cli 15424  SAlgcsalg 44959  SMblFncsmblfn 45346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cc 10426  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-omul 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-acn 9933  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-ioo 13324  df-ico 13326  df-fl 13753  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-rest 17364  df-salg 44960  df-smblfn 45347
This theorem is referenced by:  smflimsuplem3  45473
  Copyright terms: Public domain W3C validator