Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimmpt Structured version   Visualization version   GIF version

Theorem smflimmpt 46808
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). 𝐴 can contain 𝑚 as a free variable, in other words it can be thought as an indexed collection 𝐴(𝑚). 𝐵 can be thought as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimmpt.p 𝑚𝜑
smflimmpt.x 𝑥𝜑
smflimmpt.n 𝑛𝜑
smflimmpt.m (𝜑𝑀 ∈ ℤ)
smflimmpt.z 𝑍 = (ℤ𝑀)
smflimmpt.a ((𝜑𝑚𝑍) → 𝐴𝑉)
smflimmpt.b ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
smflimmpt.s (𝜑𝑆 ∈ SAlg)
smflimmpt.l ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smflimmpt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
smflimmpt.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
Assertion
Ref Expression
smflimmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑆,𝑚,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑚,𝑛)   𝑊(𝑥,𝑚,𝑛)

Proof of Theorem smflimmpt
StepHypRef Expression
1 smflimmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))))
3 smflimmpt.x . . . 4 𝑥𝜑
4 smflimmpt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
54a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
6 smflimmpt.n . . . . . . . . . . . . . 14 𝑛𝜑
7 smflimmpt.p . . . . . . . . . . . . . . . 16 𝑚𝜑
8 nfv 1914 . . . . . . . . . . . . . . . 16 𝑚 𝑛𝑍
97, 8nfan 1899 . . . . . . . . . . . . . . 15 𝑚(𝜑𝑛𝑍)
10 smflimmpt.z . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
1110uztrn2 12812 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1211adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
14 smflimmpt.a . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → 𝐴𝑉)
1514mptexd 7198 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ V)
1613, 12, 15syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) ∈ V)
17 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑍 ↦ (𝑥𝐴𝐵)) = (𝑚𝑍 ↦ (𝑥𝐴𝐵))
1817fvmpt2 6979 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑍 ∧ (𝑥𝐴𝐵) ∈ V) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
1912, 16, 18syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2019dmeqd 5869 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = dom (𝑥𝐴𝐵))
21 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑛𝑍
223, 21nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑𝑛𝑍)
23 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑚 ∈ (ℤ𝑛)
2422, 23nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛))
25 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝜑)
2612adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑚𝑍)
27 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑥𝐴)
28 smflimmpt.b . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
2925, 26, 27, 28syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝐵𝑊)
30 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3124, 29, 30fnmptd 6659 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) Fn 𝐴)
3231fndmd 6623 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = 𝐴)
3320, 32eqtr2d 2765 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
349, 33iineq2d 4979 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
356, 34iuneq2df 45041 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
36 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → 𝑚𝑍)
3736, 15, 18syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
3837eqcomd 2735 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) = ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3938dmeqd 5869 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4013, 12, 39syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
419, 40iineq2d 4979 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
426, 41iuneq2df 45041 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4335, 42eqtr4d 2767 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4443eleq2d 2814 . . . . . . . . . . 11 (𝜑 → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)))
4544biimpa 476 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4645adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
47 eliun 4959 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4847biimpi 216 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4948adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5049adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
51 nfv 1914 . . . . . . . . . . . . 13 𝑛(𝑚𝑍𝐵) ∈ dom ⇝
526, 51nfan 1899 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )
53 nfv 1914 . . . . . . . . . . . 12 𝑛(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝
54 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
55 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑚𝑥
56 nfii1 4993 . . . . . . . . . . . . . . . . . 18 𝑚 𝑚 ∈ (ℤ𝑛)𝐴
5755, 56nfel 2906 . . . . . . . . . . . . . . . . 17 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)𝐴
589, 57nfan 1899 . . . . . . . . . . . . . . . 16 𝑚((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5910eluzelz2 45399 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛 ∈ ℤ)
6059ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
61 eqid 2729 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
6210fvexi 6872 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
6362a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
6410uzssd3 45422 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
6564ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
66 fvexd 6873 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
67 eliinid 45105 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)𝐴𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6867adantll 714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6913adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
7012adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
7169, 70, 68, 28syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
7230fvmpt2 6979 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7368, 71, 72syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7458, 60, 61, 63, 63, 65, 65, 66, 73climeldmeqmpt3 45687 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7574adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7654, 75mpbird 257 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
7776exp31 419 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
7852, 53, 77rexlimd 3244 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
7978adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8050, 79mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8146, 80jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8281ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
8344biimpar 477 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8483adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8584, 48syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
866, 53nfan 1899 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
87 simpllr 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8874adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
8987, 88mpbid 232 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9089exp31 419 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ )))
9186, 51, 90rexlimd 3244 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9291adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9385, 92mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9484, 93jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ))
9594ex 412 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )))
9682, 95impbid 212 . . . . . 6 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
973, 96rabbida3 45129 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
985, 97eqtrd 2764 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
994eleq2i 2820 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
10099biimpi 216 . . . . . . . 8 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
101 rabidim1 3428 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
102100, 101, 483syl 18 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
103102adantl 481 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
104 nfcv 2891 . . . . . . . . 9 𝑛𝑥
105 nfiu1 4991 . . . . . . . . . . 11 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴
10651, 105nfrabw 3443 . . . . . . . . . 10 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
1074, 106nfcxfr 2889 . . . . . . . . 9 𝑛𝐷
108104, 107nfel 2906 . . . . . . . 8 𝑛 𝑥𝐷
1096, 108nfan 1899 . . . . . . 7 𝑛(𝜑𝑥𝐷)
110 nfv 1914 . . . . . . 7 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))
1117, 8, 57nf3an 1901 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
112 simp2 1137 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍)
113112, 59syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
11462a1i 11 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
11510, 112uzssd2 45413 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
116 fvexd 6873 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
117673ad2antl3 1188 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
118 simpl1 1192 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
119112, 11sylan 580 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
120118, 119, 117, 28syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
121117, 120, 72syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
122111, 113, 61, 114, 114, 115, 115, 116, 121climfveqmpt3 45680 . . . . . . . . 9 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
1231223exp 1119 . . . . . . . 8 (𝜑 → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
124123adantr 480 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
125109, 110, 124rexlimd 3244 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))))
126103, 125mpd 15 . . . . 5 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
127126eqcomd 2735 . . . 4 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍𝐵)) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))))
1283, 98, 127mpteq12da 5190 . . 3 (𝜑 → (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))))
12938eqcomd 2735 . . . . . . . . 9 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
130129fveq1d 6860 . . . . . . . 8 ((𝜑𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
1317, 130mpteq2da 5199 . . . . . . 7 (𝜑 → (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))
132131eqcomd 2735 . . . . . 6 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
133132eleq1d 2813 . . . . 5 (𝜑 → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ ))
1343, 42, 133rabbida2 45126 . . . 4 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ })
135130eqcomd 2735 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑥𝐴𝐵)‘𝑥) = (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))
1367, 135mpteq2da 5199 . . . . 5 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
137136fveq2d 6862 . . . 4 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
1383, 134, 137mpteq12df 5191 . . 3 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
1392, 128, 1383eqtrd 2768 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
140 nfmpt1 5206 . . 3 𝑚(𝑚𝑍 ↦ (𝑥𝐴𝐵))
141 nfcv 2891 . . . 4 𝑥𝑍
142 nfmpt1 5206 . . . 4 𝑥(𝑥𝐴𝐵)
143141, 142nfmpt 5205 . . 3 𝑥(𝑚𝑍 ↦ (𝑥𝐴𝐵))
144 smflimmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
145 smflimmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
146 smflimmpt.l . . . 4 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
1477, 146, 17fmptdf 7089 . . 3 (𝜑 → (𝑚𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
148 eqid 2729 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ }
149 eqid 2729 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
150140, 143, 144, 10, 145, 147, 148, 149smflim2 46804 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
151139, 150eqeltrd 2828 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wrex 3053  {crab 3405  Vcvv 3447  wss 3914   ciun 4955   ciin 4956  cmpt 5188  dom cdm 5638  cfv 6511  cz 12529  cuz 12793  cli 15450  SAlgcsalg 46306  SMblFncsmblfn 46693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ioo 13310  df-ico 13312  df-fl 13754  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-rest 17385  df-salg 46307  df-smblfn 46694
This theorem is referenced by:  smflimsuplem3  46820
  Copyright terms: Public domain W3C validator