Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimmpt Structured version   Visualization version   GIF version

Theorem smflimmpt 46261
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). 𝐴 can contain 𝑚 as a free variable, in other words it can be thought as an indexed collection 𝐴(𝑚). 𝐵 can be thought as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimmpt.p 𝑚𝜑
smflimmpt.x 𝑥𝜑
smflimmpt.n 𝑛𝜑
smflimmpt.m (𝜑𝑀 ∈ ℤ)
smflimmpt.z 𝑍 = (ℤ𝑀)
smflimmpt.a ((𝜑𝑚𝑍) → 𝐴𝑉)
smflimmpt.b ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
smflimmpt.s (𝜑𝑆 ∈ SAlg)
smflimmpt.l ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smflimmpt.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
smflimmpt.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
Assertion
Ref Expression
smflimmpt (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑆,𝑚,𝑛   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐴(𝑚)   𝐵(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑚,𝑛)   𝑊(𝑥,𝑚,𝑛)

Proof of Theorem smflimmpt
StepHypRef Expression
1 smflimmpt.g . . . 4 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵)))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))))
3 smflimmpt.x . . . 4 𝑥𝜑
4 smflimmpt.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
54a1i 11 . . . . 5 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
6 smflimmpt.n . . . . . . . . . . . . . 14 𝑛𝜑
7 smflimmpt.p . . . . . . . . . . . . . . . 16 𝑚𝜑
8 nfv 1909 . . . . . . . . . . . . . . . 16 𝑚 𝑛𝑍
97, 8nfan 1894 . . . . . . . . . . . . . . 15 𝑚(𝜑𝑛𝑍)
10 smflimmpt.z . . . . . . . . . . . . . . . . . . . 20 𝑍 = (ℤ𝑀)
1110uztrn2 12871 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1211adantll 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
13 simpll 765 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
14 smflimmpt.a . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚𝑍) → 𝐴𝑉)
1514mptexd 7234 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ V)
1613, 12, 15syl2anc 582 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) ∈ V)
17 eqid 2725 . . . . . . . . . . . . . . . . . . 19 (𝑚𝑍 ↦ (𝑥𝐴𝐵)) = (𝑚𝑍 ↦ (𝑥𝐴𝐵))
1817fvmpt2 7013 . . . . . . . . . . . . . . . . . 18 ((𝑚𝑍 ∧ (𝑥𝐴𝐵) ∈ V) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
1912, 16, 18syl2anc 582 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
2019dmeqd 5907 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = dom (𝑥𝐴𝐵))
21 nfv 1909 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑛𝑍
223, 21nfan 1894 . . . . . . . . . . . . . . . . . . 19 𝑥(𝜑𝑛𝑍)
23 nfv 1909 . . . . . . . . . . . . . . . . . . 19 𝑥 𝑚 ∈ (ℤ𝑛)
2422, 23nfan 1894 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛))
25 simplll 773 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝜑)
2612adantr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑚𝑍)
27 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝑥𝐴)
28 smflimmpt.b . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍𝑥𝐴) → 𝐵𝑊)
2925, 26, 27, 28syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) ∧ 𝑥𝐴) → 𝐵𝑊)
30 eqid 2725 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3124, 29, 30fnmptd 6695 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑥𝐴𝐵) Fn 𝐴)
3231fndmd 6658 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = 𝐴)
3320, 32eqtr2d 2766 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐴 = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
349, 33iineq2d 5019 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
356, 34iuneq2df 44475 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
36 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚𝑍) → 𝑚𝑍)
3736, 15, 18syl2anc 582 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
3837eqcomd 2731 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) = ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
3938dmeqd 5907 . . . . . . . . . . . . . . . 16 ((𝜑𝑚𝑍) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4013, 12, 39syl2anc 582 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → dom (𝑥𝐴𝐵) = dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
419, 40iineq2d 5019 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
426, 41iuneq2df 44475 . . . . . . . . . . . . 13 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚))
4335, 42eqtr4d 2768 . . . . . . . . . . . 12 (𝜑 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4443eleq2d 2811 . . . . . . . . . . 11 (𝜑 → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)))
4544biimpa 475 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
4645adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵))
47 eliun 5000 . . . . . . . . . . . . 13 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ↔ ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4847biimpi 215 . . . . . . . . . . . 12 (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
4948adantl 480 . . . . . . . . . . 11 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5049adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
51 nfv 1909 . . . . . . . . . . . . 13 𝑛(𝑚𝑍𝐵) ∈ dom ⇝
526, 51nfan 1894 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )
53 nfv 1909 . . . . . . . . . . . 12 𝑛(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝
54 simpllr 774 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
55 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑚𝑥
56 nfii1 5032 . . . . . . . . . . . . . . . . . 18 𝑚 𝑚 ∈ (ℤ𝑛)𝐴
5755, 56nfel 2907 . . . . . . . . . . . . . . . . 17 𝑚 𝑥 𝑚 ∈ (ℤ𝑛)𝐴
589, 57nfan 1894 . . . . . . . . . . . . . . . 16 𝑚((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
5910eluzelz2 44848 . . . . . . . . . . . . . . . . 17 (𝑛𝑍𝑛 ∈ ℤ)
6059ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
61 eqid 2725 . . . . . . . . . . . . . . . 16 (ℤ𝑛) = (ℤ𝑛)
6210fvexi 6908 . . . . . . . . . . . . . . . . 17 𝑍 ∈ V
6362a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
6410uzssd3 44871 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
6564ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
66 fvexd 6909 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
67 eliinid 44542 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑚 ∈ (ℤ𝑛)𝐴𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6867adantll 712 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
6913adantlr 713 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
7012adantlr 713 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
7169, 70, 68, 28syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
7230fvmpt2 7013 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7368, 71, 72syl2anc 582 . . . . . . . . . . . . . . . 16 ((((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
7458, 60, 61, 63, 63, 65, 65, 66, 73climeldmeqmpt3 45140 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7574adantllr 717 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
7654, 75mpbird 256 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
7776exp31 418 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
7852, 53, 77rexlimd 3254 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
7978adantrl 714 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8050, 79mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8146, 80jca 510 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ))
8281ex 411 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
8344biimpar 476 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵)) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8483adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
8584, 48syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
866, 53nfan 1894 . . . . . . . . . . . 12 𝑛(𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
87 simpllr 774 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )
8874adantllr 717 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍𝐵) ∈ dom ⇝ ))
8987, 88mpbid 231 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) ∧ 𝑛𝑍) ∧ 𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9089exp31 418 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ )))
9186, 51, 90rexlimd 3254 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9291adantrl 714 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → (𝑚𝑍𝐵) ∈ dom ⇝ ))
9385, 92mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑚𝑍𝐵) ∈ dom ⇝ )
9484, 93jca 510 . . . . . . . 8 ((𝜑 ∧ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ))
9594ex 411 . . . . . . 7 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ) → (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ )))
9682, 95impbid 211 . . . . . 6 (𝜑 → ((𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∧ (𝑚𝑍𝐵) ∈ dom ⇝ ) ↔ (𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∧ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ )))
973, 96rabbida3 44566 . . . . 5 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
985, 97eqtrd 2765 . . . 4 (𝜑𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ })
994eleq2i 2817 . . . . . . . . 9 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
10099biimpi 215 . . . . . . . 8 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ })
101 rabidim1 3441 . . . . . . . 8 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ } → 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴)
102100, 101, 483syl 18 . . . . . . 7 (𝑥𝐷 → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
103102adantl 480 . . . . . 6 ((𝜑𝑥𝐷) → ∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
104 nfcv 2892 . . . . . . . . 9 𝑛𝑥
105 nfiu1 5030 . . . . . . . . . . 11 𝑛 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴
10651, 105nfrabw 3457 . . . . . . . . . 10 𝑛{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐴 ∣ (𝑚𝑍𝐵) ∈ dom ⇝ }
1074, 106nfcxfr 2890 . . . . . . . . 9 𝑛𝐷
108104, 107nfel 2907 . . . . . . . 8 𝑛 𝑥𝐷
1096, 108nfan 1894 . . . . . . 7 𝑛(𝜑𝑥𝐷)
110 nfv 1909 . . . . . . 7 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))
1117, 8, 57nf3an 1896 . . . . . . . . . 10 𝑚(𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴)
112 simp2 1134 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛𝑍)
113112, 59syl 17 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑛 ∈ ℤ)
11462a1i 11 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → 𝑍 ∈ V)
11510, 112uzssd2 44862 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → (ℤ𝑛) ⊆ 𝑍)
116 fvexd 6909 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) ∈ V)
117673ad2antl3 1184 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑥𝐴)
118 simpl1 1188 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
119112, 11sylan 578 . . . . . . . . . . . 12 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
120118, 119, 117, 28syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐵𝑊)
121117, 120, 72syl2anc 582 . . . . . . . . . 10 (((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
122111, 113, 61, 114, 114, 115, 115, 116, 121climfveqmpt3 45133 . . . . . . . . 9 ((𝜑𝑛𝑍𝑥 𝑚 ∈ (ℤ𝑛)𝐴) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
1231223exp 1116 . . . . . . . 8 (𝜑 → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
124123adantr 479 . . . . . . 7 ((𝜑𝑥𝐷) → (𝑛𝑍 → (𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))))
125109, 110, 124rexlimd 3254 . . . . . 6 ((𝜑𝑥𝐷) → (∃𝑛𝑍 𝑥 𝑚 ∈ (ℤ𝑛)𝐴 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵))))
126103, 125mpd 15 . . . . 5 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍𝐵)))
127126eqcomd 2731 . . . 4 ((𝜑𝑥𝐷) → ( ⇝ ‘(𝑚𝑍𝐵)) = ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))))
1283, 98, 127mpteq12da 5233 . . 3 (𝜑 → (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍𝐵))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))))
12938eqcomd 2731 . . . . . . . . 9 ((𝜑𝑚𝑍) → ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) = (𝑥𝐴𝐵))
130129fveq1d 6896 . . . . . . . 8 ((𝜑𝑚𝑍) → (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥) = ((𝑥𝐴𝐵)‘𝑥))
1317, 130mpteq2da 5246 . . . . . . 7 (𝜑 → (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))
132131eqcomd 2731 . . . . . 6 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
133132eleq1d 2810 . . . . 5 (𝜑 → ((𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ ))
1343, 42, 133rabbida2 44563 . . . 4 (𝜑 → {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ })
135130eqcomd 2731 . . . . . 6 ((𝜑𝑚𝑍) → ((𝑥𝐴𝐵)‘𝑥) = (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))
1367, 135mpteq2da 5246 . . . . 5 (𝜑 → (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) = (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))
137136fveq2d 6898 . . . 4 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥))) = ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
1383, 134, 137mpteq12df 5234 . . 3 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝑥𝐴𝐵) ∣ (𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝑥𝐴𝐵)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
1392, 128, 1383eqtrd 2769 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))))
140 nfmpt1 5256 . . 3 𝑚(𝑚𝑍 ↦ (𝑥𝐴𝐵))
141 nfcv 2892 . . . 4 𝑥𝑍
142 nfmpt1 5256 . . . 4 𝑥(𝑥𝐴𝐵)
143141, 142nfmpt 5255 . . 3 𝑥(𝑚𝑍 ↦ (𝑥𝐴𝐵))
144 smflimmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
145 smflimmpt.s . . 3 (𝜑𝑆 ∈ SAlg)
146 smflimmpt.l . . . 4 ((𝜑𝑚𝑍) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
1477, 146, 17fmptdf 7124 . . 3 (𝜑 → (𝑚𝑍 ↦ (𝑥𝐴𝐵)):𝑍⟶(SMblFn‘𝑆))
148 eqid 2725 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ }
149 eqid 2725 . . 3 (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) = (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥))))
150140, 143, 144, 10, 145, 147, 148, 149smflim2 46257 . 2 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom ((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚) ∣ (𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑚𝑍 ↦ (((𝑚𝑍 ↦ (𝑥𝐴𝐵))‘𝑚)‘𝑥)))) ∈ (SMblFn‘𝑆))
151139, 150eqeltrd 2825 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wnf 1777  wcel 2098  wrex 3060  {crab 3419  Vcvv 3463  wss 3945   ciun 4996   ciin 4997  cmpt 5231  dom cdm 5677  cfv 6547  cz 12588  cuz 12852  cli 15460  SAlgcsalg 45759  SMblFncsmblfn 46146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cc 10458  ax-ac2 10486  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-inf 9466  df-oi 9533  df-card 9962  df-acn 9965  df-ac 10139  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-rp 13007  df-ioo 13360  df-ico 13362  df-fl 13789  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-rlim 15465  df-rest 17403  df-salg 45760  df-smblfn 46147
This theorem is referenced by:  smflimsuplem3  46273
  Copyright terms: Public domain W3C validator