Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinssd Structured version   Visualization version   GIF version

Theorem iinssd 43805
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinssd.1 (𝜑𝑋𝐴)
iinssd.2 (𝑥 = 𝑋𝐵 = 𝐷)
iinssd.3 (𝜑𝐷𝐶)
Assertion
Ref Expression
iinssd (𝜑 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem iinssd
StepHypRef Expression
1 iinssd.1 . . 3 (𝜑𝑋𝐴)
2 iinssd.3 . . 3 (𝜑𝐷𝐶)
3 iinssd.2 . . . . 5 (𝑥 = 𝑋𝐵 = 𝐷)
43sseq1d 4012 . . . 4 (𝑥 = 𝑋 → (𝐵𝐶𝐷𝐶))
54rspcev 3612 . . 3 ((𝑋𝐴𝐷𝐶) → ∃𝑥𝐴 𝐵𝐶)
61, 2, 5syl2anc 584 . 2 (𝜑 → ∃𝑥𝐴 𝐵𝐶)
7 iinss 5058 . 2 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
86, 7syl 17 1 (𝜑 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wrex 3070  wss 3947   ciin 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476  df-in 3954  df-ss 3964  df-iin 4999
This theorem is referenced by:  smfsuplem3  45515  smflimsuplem1  45522
  Copyright terms: Public domain W3C validator