Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinssd Structured version   Visualization version   GIF version

Theorem iinssd 42680
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinssd.1 (𝜑𝑋𝐴)
iinssd.2 (𝑥 = 𝑋𝐵 = 𝐷)
iinssd.3 (𝜑𝐷𝐶)
Assertion
Ref Expression
iinssd (𝜑 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem iinssd
StepHypRef Expression
1 iinssd.1 . . 3 (𝜑𝑋𝐴)
2 iinssd.3 . . 3 (𝜑𝐷𝐶)
3 iinssd.2 . . . . 5 (𝑥 = 𝑋𝐵 = 𝐷)
43sseq1d 3952 . . . 4 (𝑥 = 𝑋 → (𝐵𝐶𝐷𝐶))
54rspcev 3561 . . 3 ((𝑋𝐴𝐷𝐶) → ∃𝑥𝐴 𝐵𝐶)
61, 2, 5syl2anc 584 . 2 (𝜑 → ∃𝑥𝐴 𝐵𝐶)
7 iinss 4986 . 2 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
86, 7syl 17 1 (𝜑 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  wss 3887   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-iin 4927
This theorem is referenced by:  smfsuplem3  44346  smflimsuplem1  44353
  Copyright terms: Public domain W3C validator