| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinssd | Structured version Visualization version GIF version | ||
| Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| iinssd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| iinssd.2 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) |
| iinssd.3 | ⊢ (𝜑 → 𝐷 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| iinssd | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinssd.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | iinssd.3 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ 𝐶) | |
| 3 | iinssd.2 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) | |
| 4 | 3 | sseq1d 3995 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐵 ⊆ 𝐶 ↔ 𝐷 ⊆ 𝐶)) |
| 5 | 4 | rspcev 3606 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶) → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 6 | 1, 2, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 7 | iinss 5037 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 ∩ ciin 4973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-ss 3948 df-iin 4975 |
| This theorem is referenced by: smfsuplem3 46822 smflimsuplem1 46829 |
| Copyright terms: Public domain | W3C validator |