Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinexd Structured version   Visualization version   GIF version

Theorem iinexd 45149
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinexd.1 (𝜑𝐴 ≠ ∅)
iinexd.2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
Assertion
Ref Expression
iinexd (𝜑 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iinexd
StepHypRef Expression
1 iinexd.1 . 2 (𝜑𝐴 ≠ ∅)
2 iinexd.2 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 iinexg 5284 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wne 2926  wral 3045  Vcvv 3434  c0 4281   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-in 3907  df-ss 3917  df-nul 4282  df-int 4896  df-iin 4942
This theorem is referenced by:  smfsuplem1  46828  smfinflem  46834  smflimsuplem1  46837  smflimsuplem2  46838  smflimsuplem3  46839  smflimsuplem4  46840  smflimsuplem5  46841  smflimsuplem7  46843
  Copyright terms: Public domain W3C validator