Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinexd Structured version   Visualization version   GIF version

Theorem iinexd 45138
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinexd.1 (𝜑𝐴 ≠ ∅)
iinexd.2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
Assertion
Ref Expression
iinexd (𝜑 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iinexd
StepHypRef Expression
1 iinexd.1 . 2 (𝜑𝐴 ≠ ∅)
2 iinexd.2 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 iinexg 5348 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
41, 2, 3syl2anc 584 1 (𝜑 𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2940  wral 3061  Vcvv 3480  c0 4333   ciin 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-in 3958  df-ss 3968  df-nul 4334  df-int 4947  df-iin 4994
This theorem is referenced by:  smfsuplem1  46826  smfinflem  46832  smflimsuplem1  46835  smflimsuplem2  46836  smflimsuplem3  46837  smflimsuplem4  46838  smflimsuplem5  46839  smflimsuplem7  46841
  Copyright terms: Public domain W3C validator