![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iinexd | Structured version Visualization version GIF version |
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
iinexd.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
iinexd.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
iinexd | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinexd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | iinexd.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) | |
3 | iinexg 5343 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 Vcvv 3471 ∅c0 4323 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4324 df-int 4950 df-iin 4999 |
This theorem is referenced by: smfsuplem1 46199 smfinflem 46205 smflimsuplem1 46208 smflimsuplem2 46209 smflimsuplem3 46210 smflimsuplem4 46211 smflimsuplem5 46212 smflimsuplem7 46214 |
Copyright terms: Public domain | W3C validator |