| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinexd | Structured version Visualization version GIF version | ||
| Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| iinexd.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| iinexd.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| iinexd | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinexd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | iinexd.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) | |
| 3 | iinexg 5284 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 Vcvv 3434 ∅c0 4281 ∩ ciin 4940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-in 3907 df-ss 3917 df-nul 4282 df-int 4896 df-iin 4942 |
| This theorem is referenced by: smfsuplem1 46828 smfinflem 46834 smflimsuplem1 46837 smflimsuplem2 46838 smflimsuplem3 46839 smflimsuplem4 46840 smflimsuplem5 46841 smflimsuplem7 46843 |
| Copyright terms: Public domain | W3C validator |