Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinexd Structured version   Visualization version   GIF version

Theorem iinexd 44499
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinexd.1 (𝜑𝐴 ≠ ∅)
iinexd.2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
Assertion
Ref Expression
iinexd (𝜑 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iinexd
StepHypRef Expression
1 iinexd.1 . 2 (𝜑𝐴 ≠ ∅)
2 iinexd.2 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 iinexg 5343 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
41, 2, 3syl2anc 583 1 (𝜑 𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wne 2937  wral 3058  Vcvv 3471  c0 4323   ciin 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4324  df-int 4950  df-iin 4999
This theorem is referenced by:  smfsuplem1  46199  smfinflem  46205  smflimsuplem1  46208  smflimsuplem2  46209  smflimsuplem3  46210  smflimsuplem4  46211  smflimsuplem5  46212  smflimsuplem7  46214
  Copyright terms: Public domain W3C validator