Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinexd Structured version   Visualization version   GIF version

Theorem iinexd 42571
Description: The existence of an indexed union. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinexd.1 (𝜑𝐴 ≠ ∅)
iinexd.2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
Assertion
Ref Expression
iinexd (𝜑 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iinexd
StepHypRef Expression
1 iinexd.1 . 2 (𝜑𝐴 ≠ ∅)
2 iinexd.2 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 iinexg 5260 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
41, 2, 3syl2anc 583 1 (𝜑 𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  wral 3063  Vcvv 3422  c0 4253   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-int 4877  df-iin 4924
This theorem is referenced by:  smfsuplem1  44231  smfinflem  44237  smflimsuplem1  44240  smflimsuplem2  44241  smflimsuplem3  44242  smflimsuplem4  44243  smflimsuplem5  44244  smflimsuplem7  44246
  Copyright terms: Public domain W3C validator