Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbidvaOLD Structured version   Visualization version   GIF version

Theorem rabbidvaOLD 3426
 Description: Obsolete proof of rabbidva 3425 as of 4-Dec-2023. (Contributed by NM, 28-Nov-2003.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
rabbidva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabbidvaOLD (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabbidvaOLD
StepHypRef Expression
1 rabbidva.1 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ralrimiva 3149 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
3 rabbi 3336 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
42, 3sylib 221 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  {crab 3110 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-ral 3111  df-rab 3115 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator